
A Comparative Evaluation of Systems for
Scalable Linear Algebra-based Analytics

Anthony Thomas Arun Kumar
University of California, San Diego

{ahthomas, arunkk}@eng.ucsd.edu

ABSTRACT
The growing use of statistical and machine learning (ML)
algorithms to analyze large datasets has given rise to new
systems to scale such algorithms. But implementing new
scalable algorithms in low-level languages is a painful pro-
cess, especially for enterprise and scientific users. To miti-
gate this issue, a new breed of systems expose high-level bulk
linear algebra (LA) primitives that are scalable. By compos-
ing such LA primitives, users can write analysis algorithms
in a higher-level language, while the system handles scalabil-
ity issues. But there is little work on a unified comparative
evaluation of the scalability, efficiency, and effectiveness of
such “scalable LA systems.” We take a major step towards
filling this gap. We introduce a suite of LA-specific tests
based on our analysis of the data access and communica-
tion patterns of LA workloads and their use cases. Using
our tests, we perform a comprehensive empirical compari-
son of a few popular scalable LA systems: MADlib, ML-
lib, SystemML, ScaLAPACK, SciDB, and TensorFlow us-
ing both synthetic data and a large real-world dataset. Our
study has revealed several scalability bottlenecks, unusual
performance trends, and even bugs in some systems. Our
findings have already led to improvements in SystemML,
with other systems’ developers also expressing interest. All
of our code and data scripts are available for download at
https://adalabucsd.github.io/slab.html.

1. INTRODUCTION
Supporting large-scale statistical and machine learning

(ML) algorithms over structured data has become a main-
stream requirement of modern data systems [1, 8]. Conse-
quently, both the database and cloud service industries are
scurrying to make it easier to integrate ML algorithms and
frameworks such as R with data platforms [2,9,13,14,16,32,
50]. While a roster of canned implementations might suf-
fice for popular existing algorithms, many application users,
especially in the enterprise and scientific domains often cre-
ate custom analysis algorithms for their data. Such users
typically write their algorithms using linear algebra (LA)
notation and are accustomed to tools such as R, SAS, and
Matlab [11, 17]. LA is a succinct and elegant mathematical
language to express matrix transformations for a wide vari-
ety of statistical and ML algorithms [32,37]. However, such
LA tools are mostly not scalable to datasets that may not
fit in single-node memory, which impedes effective analytics
as the volume of datasets continues to grow.

The above situation has led to a new breed of analytics
systems: scalable LA systems, which allow users to scale

their LA-based algorithms to distributed memory-based or
disk-based data without needing to manually handle data
distribution and communication. Thus, they offer a mea-
sure of physical data independence for LA-based analytics.
Examples include RIOT [82], EMC’s MADlib [50], Oracle
R Enterprise [16], Apache SystemML [32], Microsoft’s Rev-
olution R [14], Spark MLlib [65] and SparkR [18], Apache
Mahout Samsara [72], LA on SimSQL [61], and Google’s
TensorFlow [27]. Most of these systems expose an LA-based
language or API embedded in Python, Scala, or SQL as their
front-end. Almost all of them aim to scale LA operations
that process the whole dataset in bulk, i.e., in one go in a
data-parallel manner. A common example of an algorithm
that can be expressed in bulk LA is least-squares linear re-
gression (Algorithm 1). This access pattern differs from that
of stochastic gradient descent-based training of neural net-
works, which is not a bulk LA operation but rather repeat-
edly samples data subsets called mini-batches [66]. Thus,
except for TensorFlow, the above systems do not (yet) of-
fer strong support for neural networks, although there are
active efforts to extend some of them [70]. Accordingly, the
focus of this paper is on systems for bulk LA workloads.

While the recent activity on scalable LA systems has led to
many interesting research papers and open-source systems, a
fundamental practical question remains largely unanswered:
From a comparative standpoint, how effective and efficient
are such systems for scalable LA and LA-based ML? By ef-
fectiveness, we mean how “easy” they are to use in terms
of the amount of code needed to express algorithms using
their LA abstractions, as well as their setup logistics. By ef-
ficiency, we mean how “fast” they run in different settings,
especially the increasingly popular distributed memory set-
ting. Different systems have different assumptions and re-
strictions in their programming and execution models, lead-
ing to different runtime and memory usage behaviors. Exist-
ing papers and articles on such systems mostly focus on the
operating regimes where they perform well, leaving users in
the dark on where they may not perform so well. Addition-
ally, most systems were not compared to strong baselines
such as pbdR (powered by ScaLAPACK) [69]. This lack of
a unified comparative understanding of such systems’ behav-
iors could lead to both user frustration and increased costs
when picking a system to use, especially in the cloud.

We take a step towards filling this gap by introducing
a suite of performance tests for scalable LA systems and
performing a comprehensive empirical comparison of sev-
eral popular and state-of-the-art LA systems using our tests.
Our test suite is inspired by the long line of work on bench-

1

https://adalabucsd.github.io/slab.html

marks for LA packages in both the single-node in-memory
and distributed settings, e.g. benchmarks comparing BLAS,
Eigen, Intel MKL, LAPACK, and ScaLAPACK [28, 30, 41,
42, 58, 67]. But unlike such prior work, which focused only
on simple LA operations, we want to evaluate the entire hi-
erarchy of task complexity for LA-based analytics. Thus, we
delineate three orthogonal axes of interest: task complexity,
data scale, and computation environment. For data scale, we
vary both the number of examples and sparsity of the data
matrix. For the computation environment, we focus on com-
modity CPU clusters (as of this writing, few of the compared
systems offer easy integration with GPUs, FPGAs, or other
hardware accelerators in the distributed setting). We vary
the number of CPU cores and cluster nodes.

For task complexity, we include 6 common LA operations
with differing communication and computation behaviors,
as well as 2 simple pipelines of LA operations and 4 LA-
based data analysis algorithms, including 2 popular ML
algorithms. The tasks at the higher levels of complexity
present interesting opportunities for inter-operation opti-
mizations (akin to relational query optimization), which are
exploited by only some of the scalable LA systems. More-
over, the LA-based algorithms enable us to qualitatively
compare how easy or difficult it is to use the LA abstrac-
tions provided by such systems to write such algorithms.
The LA-based algorithms we include also cover a diverse set
of use cases for scalable LA-based statistical and ML an-
alytics: regression, heteroscedasticity-aware error analysis,
classification, and feature extraction.

We compare the following systems: MADlib, MLlib, Sys-
temML, ScaLAPACK, SciDB, TensorFlow, R, and NumPy.
We picked them mainly due to their popularity but also
because they are open source and have active user commu-
nities online. Our experimental study has revealed numer-
ous interesting behaviors at large data scales, including un-
expected tuning headaches, hidden scalability bottlenecks,
unusual relative performance trends, and even bugs in some
systems. For instance, we find that tuning memory-related
parameters correctly is crucial to get good performance with
the Spark-based systems (MLlib and SystemML), but the
optimal settings are LA task-specific, making it a non-trivial
task for data scientists. RDBMS-based MADlib yielded rel-
atively poor performance for LA operations on dense data
and suffers from a scalability bottleneck due to arcane re-
strictions imposed by the RDBMS, but it is competitive on
sparse data. Even more surprisingly, pbdR/ScaLAPACK
outperforms all other systems in almost all cases on dense
data. Overall, we find that SystemML offers perhaps the
best balance between physical data independence and per-
formance at scale among the compared systems.

Based on our empirical study, we identify and summa-
rize the strengths and weaknesses of each scalable LA sys-
tem to help practitioners decide which one best fits their
application needs. We also identify the major gaps in the
capabilities of such systems and distill them into a handful
of open research questions for those interested in improv-
ing such systems or building new ones. In particular, we
find that support for large sparse datasets is still relatively
poor; this is a pressing issue due to the ubiquity of large-
domain categorical features in ML applications. We also find
that many systems sometimes exhibit sub-linear multi-node
speedups. We suggest that flexible hybrid parallelism mod-
els combining data and task parallelism could make such

systems more useful for crucial meta-level ML tasks such as
hyper-parameter tuning [55]. Overall, this paper makes the
following contributions.

• To the best of our knowledge, this is the first work to
create a unified framework for comparative evaluation
of popular scalable LA systems. We discuss key design
considerations in terms of data access, communication
and computation patterns, and use cases, and we cre-
ate a suite of tests spanning the axes of task complex-
ity, data scale, and computational environment.

• Using our tests, we perform an extensive empirical
study comparing MADlib, MLlib, SystemML, pbdR/S-
caLAPACK, and SciDB in the distributed memory set-
ting, along with TensorFlow, R, and NumPy on a sin-
gle node. Apart from synthetic data of various scales,
we create two benchmark versions of a large real-world
dataset from an online advertising firm, Criteo [5].

• We analyze and distill our results into a concrete set
of guidelines for practitioners interested in using such
systems. We also identify a handful of major open
questions for further research on such systems.

• Our findings have already resulted in bug fixes and
feature earmarks for SystemML due to our conversa-
tions with its developers. We are also speaking with
the developers of some of the other systems to help
them improve their systems using our results.

To improve reproducibility and to help others extend our
work, all of our code for all tests on all systems compared,
including configuration files, as well as all of our scripts for
generating synthetic data and pre-processing Criteo data
are available for download on our project webpage: https:

//adalabucsd.github.io/slab.html.

Outline. Section 2 provides some background on LA sys-
tems and overviews of the systems we compare. Section
3 explains our test suite. Section 4 presents our empirical
study with both quantitative results and qualitative discus-
sion. Section 5 presents more analysis and discussion of the
implications of our findings for both practitioners and re-
searchers. We discuss other related work in Section 6.

2. BACKGROUND

2.1 LA Systems
A data matrix Xn×d has n examples and d features. Lin-

ear algebra (LA) is elegant and expressive formal language
to capture linear transformations of X (vectors and scalars
are special cases). Numerous statistical and ML algorithms
can be expressed using LA operations that are “bulk” vec-
torized computations over X, including such popular algo-
rithms as ordinary least squares (OLS) linear regression, lo-
gistic regression solved with many gradient methods [68],
non-negative matrix factorization, k-means clustering, and
more [37,44,46]. Such algorithms are common in enterprise
analytics, as well as social and physical sciences.

Scalable LA systems aim to let users write LA-based algo-
rithms but scale them to larger-than-memory datasets trans-
parently, i.e., with some degree of physical data indepen-
dence. Essentially, such systems abstract away lower-level
systems issues such as parallel computation, data commu-
nication, and fault tolerance (in some cases). In a sense,

2

https://adalabucsd.github.io/slab.html
https://adalabucsd.github.io/slab.html

scalable LA systems aim to achieve for LA what RDBMSs
achieve for relational algebra. Different systems take dif-
ferent routes: some layer LA as an abstraction on top of a
RDBMS or Spark, while others implement LA primitives in
standalone systems. Our goal is not to design new scalable
LA systems, but to provide a systematic quantitative and
qualitative comparison of state-of-the-art and popular sys-
tems on an even footing, using a carefully designed suite of
tests at multiple levels of abstraction.

2.2 Overview of Compared Systems
Rationale for Systems Picked. We restrict our study to
systems that are open source, well-documented, and have
helpful online user communities. This enables us to prop-
erly debug unusual system behaviors. Thus, we skip other
major open-source systems (e.g., RIOT, Samsara, SimSQL,
and RASDAMAN). We also skip industrial tools such as
Oracle R Enterprise and Microsoft Revolution R for legal
reasons but hope that our work helps spur more industrial
standardization in this arena. We study two popular system
environments: single-node in-memory and distributed mem-
ory (with disk spills allowed) but focus on the latter. For
the former, R and Python’s NumPy are the most popular
tools [11], with TensorFlow being a new contender. For the
latter, the primary scalable LA systems are pbdR, powered
by ScaLAPACK [30,69], the array database SciDB [34], the
distributed RDBMS-based MADlib [50], and Spark-based
MLlib (or SparkML) [65] and SystemML [32]. TensorFlow
does not yet offer distributed implementations of bulk LA
operations [7]; thus, we skip it for the distributed setting.

R and NumPy. These libraries treat matrices as first-
class citizens, offer a rich set of built-in LA operations and
algorithms, and are widely used in academia and enter-
prises [11]. Most LA operations in R and NumPy are thin
wrappers around highly optimized LAPACK and BLAS rou-
tines [28, 39]. R and Python also provide robust visualiza-
tion/plotting libraries (e.g., ggplot and matplotlib). Both R
and Python are interpreted and dynamically typed, which
makes optimization of LA scripts challenging.

pbdR (ScaLAPACK). ScaLAPACK extends LAPACK to
distributed memory by reimplementing many LA operations
and algorithms using a block partitioning scheme for ma-
trices [30]. It follows the “same program multiple data”
paradigm in which one logical program is executed by mul-
tiple workers (a worker corresponds to a core). A matrix is
partitioned in a highly flexible “block-cyclic” fashion (sim-
ilar to round robin), with each worker process allocated a
subset of the blocks. This allocation helps load-balance com-
putation and communication costs regardless of the access
patterns of the LA operations. The block size is a user-
given parameter. The “Programming with Big Data in R”
(pbdR) library provides higher level R interfaces to ScaLA-
PACK and OpenMPI [69]. The “distributed matrix” pack-
age in pbdR overloads several built-in LA operations in R
to enable transparent distributed execution. pbdR compiles
programs to MPI batch jobs, which are then submitted for
execution on an MPI cluster [45].

MADlib. MADlib is a library that implements both LA
primitives and popular ML algorithms over PostgreSQL and
the parallel RDBMS Greenplum [50]. Matrices are stored as
tables and many LA operations are implemented directly in

SQL, enabling MADlib to exploit the RDBMS for memory
management and scalability. Some operations, such as eigen
or singular value decompositions, require the matrix to fit in
single-node memory [62]. Related to MADlib (but not com-
pared here) are RIOT-DB [82], which translates LA scripts
written in R into SQL, and SimSQL [61] which implements
custom datatypes for block-partitioned matrices and custom
user-defined functions for LA operations.

Spark MLlib/SparkML. These are libraries that provide
LA primitives and canned implementations of some popu-
lar ML algorithms on Spark RDDs. We use MLlib, since
SparkML does not yet support distributed matrices. Apart
from the LocalMatrix datatype for small data, MLlib has
three main (physical) datatypes for distributed matrices tar-
geting different data access patterns. The user must select
a matrix type explicitly. The operators provided for each
type are not consistent, e.g., the type supporting matrix-
matrix multiplication does not support decompositions and
vice versa. All matrix types support either sparse or dense
data, but some operators densify sparse matrices.

SystemML on Spark. Introduced for Hadoop and then
ported to Spark, SystemML is perhaps the most mature
scalable LA system [32]; we use the recommended Spark
version [4]. SystemML offers a “declarative” language called
DML with R-like syntax to express LA scripts (there are also
APIs in Python and Scala/Java). DML offers full physical
data independence, i.e., users do not decide data layout for-
mats or low-level execution details. SystemML stores ma-
trices in a block-partitioned format implemented as a Spark
RDD. Inspired by RDBMSs, SystemML has an optimizing
compiler that converts a DML script to Spark jobs by apply-
ing a suite of logical LA-specific rewrite optimizations and
physical execution optimizations. The compiler translates
a DML script into a physical execution plan which selects
operator implementations based on data and system char-
acteristics (e.g. size, sparsity, RAM). SystemML can trans-
parently switch between local and distributed execution.

TensorFlow. TensorFlow (TF) is a framework for express-
ing ML algorithms, especially neural networks [27]. It has
APIs in Python and C++ for both LA primitives and canned
ML implementations; we use the Python API. While TF
is primarily meant for easily expressing and training com-
plex neural network architectures using mini-batch stochas-
tic gradient decent (SGD), it can also be used for bulk LA-
based algorithms in the single-node setting. But does not
provide scalable LA operations. A TF program is modeled
as a graph in which nodes represent operations over multidi-
mensional arrays (“tensors”) and edges represent dataflow.
TF allows for operators to execute on different cluster nodes
and handles communication under the hood. Thus, TF is
able to automatically scale mini-batch algorithms to the
cluster setting, but it cannot scale bulk LA algorithms, since
each individual operator must fit on a single node.

SciDB. SciDB is a database system aimed at scientific com-
puting applications [34]. It provides a declarative interface
similar to SQL in which users compose algebraic operators
that can read, write, and update multidimensional arrays.
Internally, SciDB shards a logical array into a set of possibly
overlapping chunks that are distributed over instances that
possibly reside on different physical nodes. As of this writ-
ing, SciDB supports a fairly limited set of LA operations

3

(matrix-matrix multiplication and singular value decompo-
sition). Furthermore, these operations do not support disk
spills, i.e., the data must fit in distributed memory.

3. DESCRIPTION OF TESTS
We delineate our tests along three orthogonal axes; for

each axis, we list parameters to vary in order to test both
the computational and communication aspects of scalable
LA workloads. We now explain each axis in detail.

Axis 1: Task Complexity. At a high-level, we decompose
bulk LA workloads into three levels of task complexity. Each
level of complexity targets different kinds of implementation
choices and optimizations (if any) in scalable LA systems.
The first, and lowest, level of tasks consists of basic LA oper-
ations over the data matrix. Such operators are the bedrock
of LA-based ML; we denote this set of tests MAT. The sec-
ond level consists of “simple” pipelines (compositions) of LA
operations, which offer more scope for optimization; we de-
note this set by PIPE. The highest level of task complexity
consists of LA-based statistical analysis and ML algorithm
scripts; we denote this set by ALG. Section 3.1 explains
the specific tasks we pick for each level in detail and why.
Table 1 summarizes all tasks.

Axis 2: Data Scale Factors. Varying key properties of the
data matrix lets us stress test how the systems perform at
different data scales. For the sake of simplicity and uniform
treatment across all systems, we assume the data matrix
X has only of numeric features; categorical features are as-
sumed to be pre-converted using one-hot encoding to obtain
sparse 0/1 vectors [15]. There are three key settings: num-
ber of rows, number of columns and the fraction of non-zero
cells, also called sparsity. We note that the number of rows
and columns governs the shape of the data matrix X. We
focus on varying the number of rows and data sparsity as
these parameters govern most practical workloads.

Axis 3: Computational Scale Factors. This axis cap-
tures the amount of computational resources available. Once
again, for the sake of simplicity and uniform treatment across
all systems, we focus on commodity CPU-based compute
clusters in the cloud. Thus, we only vary two settings: num-
ber of CPU cores and number of worker nodes. While this
is a popular setting for many enterprises and domain sci-
entists, we note that GPUs, FPGAs, and custom ASICs
(e.g., TPUs [52]) can be used to accelerate LA workloads.
However, not all scalable LA systems currently support such
hardware. Thus, we leave it to future work to compare the
systems in these new environments.

3.1 Task Complexity
While data and computational scale factors are standard

for any benchmark comparison of data systems, the task
complexity axis is LA-specific. We delineate computational
and communication behaviors of scalable LA workloads and
capture them using a small set of tests at three levels of
complexity, summarized by Table 1. We now elaborate upon
our rationale for picking these specific tests.

3.1.1 MAT: Matrix Operations

Scalable implementations of LA operations are the bedrock
of scalable LA systems. But there are far too many LA oper-
ations for an exhaustive list to be practical. We resolve this
issue by observing that LA operations can be grouped into a
small set of categories based on commonalities in their data
access patterns, memory footprints, and computational and
communication behaviors on large data matrices partitioned
across workers in a pre-specified way (row-wise, column-
wise, or block-partitioned). We define six major categories:

(1) Unary operations that only need partition-local local
reads/writes without communication, e.g., matrix transpose
and scalar-matrix multiplication. If the partitioning is row-
wise (resp. column-wise), row-wise (resp. column-wise) sum-
mation also belongs to this category.

(2) Unary operations that require communicating a constant-
sized state between workers, e.g., norms, trace, and full sum-
mation. These are analogous to algebraic aggregates in SQL.

(3) Unary operations that require communicating a state of
data-dependent size between workers, typically as shuffles,
e.g., Gramian and outer product. Partial summations that
do not belong to the first category belong here.

(4) Binary operations in which one of the inputs typically fits
in single-node memory, e.g., matrix-vector multiplication.

(5) Binary operations in which both are inputs larger than
single-node memory but co-partitioning can avoid commu-
nication, e.g., matrix addition and Hadamard product.

(6) Binary operations in which both inputs may be large
and which usually require communicating a state of data-
dependent size, e.g., matrix-matrix multiplication, which is
one of the most expensive LA operations.

Based on our above analysis, we pick one operation from
each category for MAT, as listed in Table 1. In choosing
between operations, we pick those that arise commonly in
LA-based ML algorithms. For instance, Frobenius norm in
the second category is often used for normalizing the data,
while Gramian in the third category arises in OLS.

3.1.2 PIPE: Pipelines and Decompositions
LA operations can be composed into pipelines, which are

typically steps in a more complex algorithm. Such pipelines
present opportunities for inter-operator optimization. Per-
haps the best known example is matrix chain multiplication,
which is analogous to join order optimization in RDBMSs [82].
Consider a simple example: X1X2X3, wherein X1 is n× 1,
X2 is 1 × n, and X3 is also n × 1. The naive left-to-right
evaluation plan computes an intermediate matrix of size
O(n2), which could exhaust available memory for large n
(e.g., 10 million) and waste runtime. But since matrix mul-
tiplication is associative, the right-to-left plan will yield the
same result, albeit much faster, since the intermediate ma-
trix is only O(1) in size. For longer chains, one can also have
bushy plans with different costs, analogous to bushy plans
for multi-table joins. The cost of a plan depends on the di-
mensions of the base matrices. A “smart” LA system should
use metadata to determine the lowest cost plan. Thus, we
include this simple pipeline as a test workload. Perhaps sur-
prisingly, most popular scalable LA systems do not optimize
this pipeline; the user has to manually fix the multiplication
order, which could be tedious in general.

Our second test is singular value decomposition (SVD),
which has many applications, including principal compo-

4

Table 1: Tests/settings for Axis 1 (task complexity). Upper case symbols in bold font (e.g., X) represent
matrices; lower case symbols in bold font (e.g., w) represent vectors. Xi,j is cell (i, j) of X. ε is the residual
vector from OLS.

Test Description Test Semantics

MAT: Matrix Operators ∼ Vary: Nodes, Cores, Rows, Sparsity

Category (1): Matrix Transpose (TRANS) XT ; XT
i,j = Xj,i

Category (2): Frobenius Norm (NORM) ‖X‖F =
√∑

i

∑
j |X2

i,j |
Category (3): Gram Matrix (GRM) XTX; (XTX)i,j =

∑
k Xk,i ·Xk,j

Category (4): Matrix-Vector Multiplication (MVM) Xw; (Xw)i =
∑

k Xik ·wk

Category (5): Matrix Addition (ADD) M + N; (M + N)i,j = Mi,j + Ni,j

Category (6): Matrix Multiplication (GMM) MN; (MN)i,j =
∑

k Mi,k ·Nk,j

PIPE: Pipelines and Decompositions ∼ Vary: Rows
Multiplication Chain (MMC) X1X2X3

Singular Value Decomposition (SVD) UΣVT ← X

ALG: Bulk LA-based ML Algorithms ∼ Vary: Nodes, Cores, Rows, Sparsity

Ordinary Least Squares Regression (OLS) (XTX)−1(XTy)
Logistic Regression (LR) See Algorithm 2
Non-negative Matrix Factorization (NMF) See Algorithm 3

Heteroscedasticity-Robust Standard Errors (HRSE) (XTX)−1XT diag(ε2)X(XTX)−1

nent analysis and solving systems of equations. But not all
systems support SVD on larger-than-memory data. Thus,
we include SVD to serve as a yardstick for the maturity of
scalable LA systems.

3.1.3 ALG: Bulk LA-based ML Algorithms
This is the highest level of task complexity: algorithms

expressed as bulk LA scripts. For tractability sake, we in-
clude only a handful of popular algorithms that satisfy the
following desiderata. First, we should cover a variety of use
cases, including regression, classification, feature extraction,
and statistical analysis. Second, we should cover a spectrum
of computation and communication behaviors. Third, we
should cover a spectrum of implementation effort. Fourth,
at least some of the compared systems should have “native”
non-LA-based implementations of some algorithms (say, us-
ing SGD) to let us asses the performance costs or gains of
using the LA abstractions. Finally, as a converse, we should
have an LA-based algorithm that is not widely available
as a native implementation to exemplify the utility of scal-
able LA abstractions, since without such abstractions, users
might have to write low-level code to scale such algorithms.

Given our above analysis, we include the following tests.
First is ordinary least squares (OLS) for linear regression
solved using the normal equations [44]. Second is logistic
regression (LR) for binary classification solved using gra-
dient descent [68]. Third is non-negative matrix factoriza-
tion (NMF) for feature extraction [47]. Fourth and final
is White’s heterscedasticity-robust standard error estimator
(HRSE) for OLS, which is commonly used in the domain
sciences and enterprises for handling heteroscedasticity [80].
Among these four algorithms, HRSE is not available as a
native implementation in any of the compared systems (ex-
cept MADlib). We now briefly explain each algorithm and
present their respective LA scripts.

Ordinary Least Squares (OLS). OLS is the most pop-
ular algorithm for linear regression [11, 44]. Given the data
matrix Xn×d and target yn×1 with values in R, OLS com-
putes the projection of y onto the space spanned byX. OLS

is trivial to implement in LA systems, since it has a closed
form analytical solution. This algorithm stress tests compu-
tation of the Gram matrix XTX, a common pattern in ML
algorithms. Algorithm 1 presents the LA script for OLS.

Algorithm 1: Ordinary Least Squares (OLS).

Inputs: X, y
1 return (XTX)−1(XTy)

Logistic Regression (LR). LR is the most popular ML
technique for classification [11]. It is typically solved using
iterative optimization algorithms expressed in LA. A sim-
ple algorithm is batch gradient descent (BGD); while it is
seldom used directly for LR, BGD’s data access and commu-
nication behaviors are similar to more popular algorithms,
such as limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS), that often converge in fewer iterations [56, 68].
The convergence properties of optimization algorithms and
ML accuracy are orthogonal to the LA system used; thus, we
focus only on per-iteration runtimes. This algorithm stress
tests matrix-vector multiplication. Algorithm 2 presents the
LA script for LR with BGD.

Algorithm 2: Logistic Regression (LR) with BGD.

Inputs: X, y, I: number of iterations, α: step size
1 for i = 1 to I do

2 w← w − α ·XT
(

1
1+e−Xw − y

)
3 return w

Non-negative Matrix Factorization (NMF). NMF fac-
torizes Xn×d into two lower rank matrices such that the
reconstruction error is minimized. NMF is common for
feature extraction, especially on sparse data (e.g., in text
mining). NMF can also use many optimization algorithms;

5

weighted multiplicative updates is popular [29, 59]. Algo-
rithm 3 presents its LA script. This algorithm stress tests
multiple LA operations, including matrix-matrix multiplica-
tions and multiplication chains.

Algorithm 3: NMF.

Inputs: X, I: number of iterations, r: rank
1 for i = 1 to I do
2 W←W � ((XHT)/(WHHT))

H← H� ((WTX)/(WTWH))
3 return (W,H)

Heteroscedasticity-Robust Standard Errors (HRSE).
Standard errors (SE) of OLS coefficients are used for hypoth-
esis tests about the sign and magnitude of the coefficients in
many domain sciences and enterprise settings. This often re-
quires addressing heteroscedasticity–a condition that occurs
when the variance of the target is correlated with feature val-
ues and may lead to incorrect SEs. To mitigate this issue,
the procedure of [80], shown in algorithm 4, is often used.
While the LA notation is succinct, expressing this compu-
tation in lower-level code could be tedious and painful. In
spite of the popularity of such procedures, among the sys-
tems compared, only MADlib offers a robust OLS variance
estimator natively. This affirms the need for scalable LA ab-
stractions to enable data scientists to scale such LA-based
procedures easily. This algorithm also stress tests multiple
LA optimizations such as avoiding the materialization of the
large (but ultra-sparse) matrix diag(ε2).

Algorithm 4: HRSE.

Inputs: X, ε: residuals from OLS
1 return (XTX)−1XT diag(ε2)X(XTX)−1

4. EXPERIMENTAL COMPARISON
We now perform a comprehensive experimental compari-

son of the performance and scalability of the LA systems
discussed in Section 2 using our suite of tests. Due to
space constraints, we only discuss a subset of our results
here for each task complexity level and present the other re-
sults in our technical report [77]. In particular, we focus
primarily on the distributed memory setting here, which
means most of our discussion centers on pbdR, MADlib,
MLlib, and SystemML. In general, the data for our exper-
iments will fit fully in distributed memory and disk spills
should not be necessary. For a handful of tests, interme-
diate results may exceed distributed memory depending on
the execution plan selected by the system. All the code
for our tests on these systems, as well as our data gener-
ation scripts (for synthetic data) and data pre-processing
scripts (for Criteo) are available for download at https:

//adalabucsd.github.io/slab.html.

Experimental Environment. All experiments were run
on the CloudLab “Clemson” site using the c6320 instance
type [71]. Each physical node has the following hardware
specifications: two Intel E5-2683 v3 14-core CPUs (2.00
GHz), 256GB ECC memory, two 1 TB 7.2K RPM 3G SATA
HDDs, and a dual-port Intel 10Gbe NIC (X520) network

Table 2: Software Packages and Versions
Name Version Name Version

Spark 2.2.0 Hadoop 2.7.3
R 3.4.3 pbdR 0.4-2

Python 2.7.12 TensorFlow 1.4.1
NumPy 1.14.0 OpenBLAS 114fc0bae3a

SystemML d91d24a9fa MADlib 1.12
Greenplum 5.1.0 SciDB 18.1

adapter. On top of these nodes, we use OpenStack to create
and manage a virtual cluster. Each OpenStack instance cor-
responds to a physical node and is allocated 24 CPU cores,
200GB RAM and 800GB of disk. The remaining resources
are reserved to run OpenStack and cannot be accessed by
the benchmarked application. Scripts to create and manage
clusters are available on the project GitHub page. Table 2
describes the versions of software packages used.

Methodology. All runs are repeated five times. The first
runtime measurement is discarded (for warming caches).
The median of the rest is plotted along with error bars de-
picting the minimum and maximum runtimes. For MLLib,
we persist data with MEMORY AND DISK SER storage level to
minimize the memory footprint of RDDs. Since Spark does
not perform computations until the results are needed, we
force the computation of specified operations in MLlib by in-
voking a simple “count” on the result RDD. Similarly, since
SystemML eliminates dead code, we insert a break in its
program flow (an “if” clause) and print a small number of
matrix cells at random from within this break to force it to
compute the outputs. We assume that data has been pre-
loaded into the appropriate storage medium for each system
(e.g. HDFS or an RDBMS) and do not include data load-
ing times in any of our measurements. But we noticed that
when using the GP-load import utility provided by MADlib,
importing a 38GB CSV file took about 467 seconds, while
uploading the same CSV file to HDFS was a bit faster at
about 379 seconds using the HDFS command line utility. In
MADlib, we have to write the output matrices to disk as
tables. Thus, all runtimes reported for MADlib include this
write time, since it is unavoidable. We emphasize that this
writing cost is not incurred by the other systems. To sim-
plify installation, SciDB was run from a Docker container.
To verify that Docker did not introduce significant over-
heads, we replicated a distributed benchmark available on
the Paradigm4 website and obtained comparable results.

System Configuration Tuning. Almost all compared
systems have many tunable configuration parameters that
affect performance. Tuning them is non-trivial and requires
considerable user time and expertise. We adopted a policy
of “reasonable best effort” for tuning based on the best prac-
tices obtained from each system’s documentation and online
community. We also performed a series of “pre-tests” to
tune key parameters, e.g., number of Greenplum segments
(for MADlib), number of cores for a Spark Executor (for
MLlib), and the LA library to load at runtime (for ML-
lib and SystemML). There is no universally optimal setting,
since it depends on the LA workload run. Thus, for each sys-
tem, we picked parameters that gave best performance on
key LA operations - especially matrix-matrix multiplication.
We think this is a reasonable and fair policy, since a typical

6

https://adalabucsd.github.io/slab.html
https://adalabucsd.github.io/slab.html

pbdR MADLib MLLib SciDB SystemML

2.5 5.0 10.0 20.0
Million Rows

10−1

100

101

102 (B) MVM

2.5 5.0 10.0 20.0
Million Rows

100

101

102 (C) ADD

2.5 5.0 10.0 20.0
Million Columns

100

101

102

103 (D) GMM

Figure 1: Multi-Node Dense Data for MAT Varying Rows

MADLib MLLib SciDB SystemML

10−2 10−1 100 101

Percentage nonzero values

10−1

100

101

102

Se
co

nd
s

(A) NORM

10−2 10−1 100 101

Percentage nonzero values

100

101

102 (B) MVM

10−2 10−1 100 101

Percentage nonzero values

100

101

102

103 (C) ADD

10−2 10−1 100 101

Percentage nonzero values

10−1

100

101

102

103 (D) GMM

Figure 2: Multi-Node Sparse Data for MAT with Varying Sparsity

user is unlikely to spend much time tuning the system com-
pared to running their actual LA workload. Due to space
constraints, we discuss more details of our tuning pre-tests
in the technical report [77]. We believe our system tuning
efforts are reasonable from the standpoint of typical data
scientist users. While more extensive tuning of a given sys-
tem might improve its runtimes slightly, that is orthogonal
to our larger goal of a unified comparative understanding.
We hope our work spurs more interest among the develop-
ers and users of such systems to apply our tests for further
empirical analysis.

4.1 Results for MAT
Multi-Node - Dense Data - Vary Rows. We fix the
number of cluster nodes at 8, the number of columns (d)
in matrices at 100, and vary the number of rows (n) for
dense data. The data matrix is stored as a CSV file on disk,
and varies in size from about 4 GB to 40 GB. For pbdR
we generate random data in memory. For general matrix-
multiplication in particular, we fix the number of columns in
N at 100 and vary the number of rows, with the dimensions
of M being the same as that of NT . Figure 1 presents the
results for four of the MAT tests. We see that the runtime
for each LA operation increases steadily, but the rate of in-
crease is faster for general matrix-multiplication, which is
consistent with their communication and computation be-
haviors explained in Section 3.1.1.

All systems except MADlib finish in under 5s on norm
and matrix-vector multiplication. MADlib’s LA operations
are slower than the others systems’, primarily because it
has higher per-tuple RDBMS processing overheads and the
I/O time of materializing output tables. SystemML is al-
most always faster than MLlib, MADlib and SciDB, since
SystemML mostly pulls computation into its driver and ex-
ecutes operators in local mode. SystemML’s runtimes see
a marked rise on ADD at 10 million rows and GMM at
20 million rows; based on the execution logs, we verified
that this rise happened because computation was moved to
Spark at this data scale. In Spark mode, SystemML ex-

hibits comparable performance to MLlib, which always runs
in distributed mode. Thus, SystemML’s ability to transpar-
ently switch between local and distributed execution based
on its data size estimates is effective. Finally, pbdR exhibits
strong performance on all four operators in spite of always
executing in distributed mode. This underscores both the
overhead imposed by the other scalable LA systems and the
importance of including a strong baseline system when eval-
uating performance.

Multi-Node - Sparse Data - Vary Sparsity. We vary
the fraction of nonzero entries in X on the same 8-node
cluster. The dimensions are chosen such that X would be
about 100 GB, if materialized as a CSV file. For MVM, w
is dense. We did not find support for sparse data in pbdR.
Figure 2 presents results. MADlib’s performance generally
scales linearly with the density of the matrix. This is be-
cause MADlib represents sparse matrices using a tuple of
values for row index, column index, and value. In this for-
mat, most sparse LA operators can be implemented using
join-aggregate queries for which the RDBMS has been ex-
tensively optimized. This explains MADlib’s stronger show-
ing on these tests relative to the dense matrix operators.
MADlib reported an error on MVM because output is re-
turned as an ARRAY rather than a table. At this data scale,
the output array exceeds PostgreSQL’s hard size limit of 1
GB for arrays. At the time of this writing, this is a serious
scalability bottleneck for MADlib that manifests in several
other tests. To avoid this issue, users would need to rewrite
algorithms in a less intuitive manner to operate on tables
in chunks. We note finally that the gap between MLlib and
MADlib can be explained, at least in part, by the fact that
MLlib always densifies the right operand in GMM, which
leads to extra processing overheads.

7

System GRM (Sec.) ADD (Sec.)

TensorFlow 10.442 4.230
R 16.787 8.854

NumPy 24.5 9.648
MLlib 18.622 104.556

SystemML 82.990 11.402
SciDB 531.631 1419.915

MADlib NA 1536.775
R MADLib MLLib NumPy SciDB SystemML TensorFlow

Figure 3: Single-Node Dense Data for MAT with Varying Cores

2.5 5.0 10.0 20.0
Million Rows

102

103

Se
co

nd
s

 (A)SVD

0.001 0.01 0.1 1.0
Million Rows

10−3

10−2

10−1

100

101

102

Lo
g

Se
co

nd
s

(B) MMC

pbdR MADLib MLLib SystemML

Figure 4: Multi-Node Dense Data for PIPE with
Varying Rows

Single-Node - Dense Data - Vary Cores. We fix n at
20 million and d at 100, which is about 16GB. We vary the
number of cores on a single node to study multicore speedup
behaviors. Figure 3 presents the results for two key LA oper-
ations. The table shows runtime on a single core to facilitate
comparison of absolute performance. We see that the ben-
efit of additional cores typically plateaus at between 4 and
16 cores depending on the system. Speedup behavior varies
considerably by both operator and by system. For SciDB,
the strong speedup in the ADD operation can be explained
by increased parallelism from adding more SciDB instances.
For the in-memory systems, multicore speedups are largely
dictated by the underlying LA implementation. For exam-
ple, R’s implementation of ADD never uses multiple threads
while TensorFlow’s does. Such implementation decisions are
likely reflective of the different workloads targeted by these
systems. R was designed with small to medium size data in
mind. In such a context, overhead from setting up threads
and copying data may exceed the benefits of parallelism
for very simple binary operators like addition. Finally, we
note that while TensorFlow’s runtimes are generally fastest,
it performs all computations using single precision floating
point numbers (float) by default, while the other systems
all use double precision numbers (double).

4.2 Results for PIPE
Back to the 8-node setting, we now run matrix multipli-

cation chain (MMC) and SVD on dense data. Figure 4 (A)
presents results for SVD. For SVD we fix d = 100 and vary
n. We compute only the singular vectors corresponding to
the ten largest singular values. SystemML is not shown be-
cause it does not provide a distributed SVD. SciDB is not
shown because its SVD implementation must compute all
three factor matrices independently and so a fair compari-
son is not possible. MLlib’s strong performance for this op-
erator is due to a novel algorithm (described in [81]), which

is optimized for map-reduce.
Figure 4 (B) presents results for MMC. We omit MADlib

and SciDB as the user must specify the multiplication order
explicitly. We see that only SystemML is able to determine
the optimal multiplication order and avoid creating the large
intermediate matrix. Both pbdR and MLlib have orders of
magnitude higher runtimes and eventually crash for even
modestly large n. We note, however, that neither pbdR not
MLlib claim to be able to detect this optimization; thus,
this represents an avenue for improving these systems.

4.3 Results for ALG
Multi-Node - Dense Data - Vary Rows. For the same
cluster and data setup as Figure 1, we run the ALG tests
for dense data. For LR and NMF, the runtimes shown are
averaged over three iterations. Figure 5 presents the re-
sults. The trends (and explanations) largely follow those
of Figure 1, with the relative gap between SystemML and
MLlib being larger than for the MAT tests. As with Fig-
ure 1, SystemML again performs most computations in the
driver program, which explains its high performance, often
surpassing pbdR. The jump in runtime for SystemML on
HRSE at 10 million rows is again caused by switching to
Spark mode. For pbdR, it was necessary to hand-optimize
the sparse diagonal matrix multiplication in HRSE to avoid
out-of-memory errors. MADlib does not automate composi-
tion of LA operators, which forces all intermediate results to
be written to disk, leading to high I/O costs and runtimes
for iterative algorithms. SciDB does not provide an operator
for matrix inversion or solving a linear system. To imple-
ment OLS and HRSE on SciDB, we were forced to compute
(XTX)−1 using SVD. Furthermore, to compute the inverse,
it is necessary to fully compute SV D(XTX) thrice as the
SVD operator provided is strangely only able to return a
single matrix in the decomposition per call.

Single-Node - Dense Data - Vary Cores. For the same
single-node setup and data scales as Figure 3, we run the
ALG tests for dense data to study the multicore speedup
behaviors of all systems. To obtain tractable runtimes for
MADlib, we reduce matrix size to 2.5 × 106. Figure 14
presents the results. Speedup behavior varies substantially
by system and algorithm. R is faster than NumPy for LR
and HRSE, but not on the others, likely due to the overheads
of intermediate data copies for matrix-matrix multiplica-
tion [75]. Surprisingly, MLlib is comparable in performance
to TensorFlow on OLS and LR. But it is slower on NMF
and much slower on HRSE due inefficiency in the method
used to compute the dense-diagonal product in HRSE, which

8

pbdR MADLib MLLib SciDB SystemML

2.5 5.0 10.0 20.0
Million Rows

100

101

102

103
Se

co
nd

s
(A) OLS

2.5 5.0 10.0 20.0
Million Rows

100

101

102

(B) LR

2.5 5.0 10.0 20.0
Million Rows

100

101

102

103 (C) NMF

2.5 5.0 10.0 20.0
Million Rows

101

102

103

(D) HRSE

Figure 5: Multi-Node Dense Data for ALG with varying Rows

R MADLib MLLib NumPy SciDB SystemML TensorFlow

1 2 4 8 16 24
Number of Cores

101

102

103

Se
co

nd
s

(A) OLS

1 2 4 8 16 24
Number of Cores

100

101

102
(B) LR

1 2 4 8 16 24
Number of Cores

101

102

103 (C) NMF

1 2 4 8 16 24
Number of Cores

101

102

103

104
(D) HRSE

Figure 6: Single-Node Dense Data for ALG with varying Cores

we were forced to code by hand. We linked MLlib with a
native BLAS library because it yielded substantial perfor-
mance improvements over the default JVM implementation.
For TensorFlow, we used a special “loop” operator provided
by the TF API, since it does not require us to copy data
between NumPy and TF at each iteration.

4.4 Scalability on Criteo Datasets
While our above results with synthetic data already give

interesting insights about the compared systems, we also
want to know how these systems perform on a large real-
world dataset for ML analytics. In particular, we are also
interested in comparing the native, non-LA based imple-
mentations offered by some systems against their own LA-
based versions. We use a large public dataset from Criteo,
whose full size is 1 TB [5]. Each example is an ad display
event. The target is binary, indicating if the ad was clicked
or not, but we can treat it as numeric too for our purposes.
There are 13 numeric features (integer counts) and 26 cate-
gorical features (32-bit hash strings) overall. For the sake of
tractability in terms of runtimes, we subsample this dataset.
Our sample has 200 million examples and is 50 GB in raw
form. We pre-process this version to create two benchmark
versions for our comparison: DenseCriteo and SparseCriteo.

DenseCriteo retains the target and 10 numeric features.
Its size as a CSV file is 32 GB. We picked this size to ensure
all systems are able to work and at least most of them are
able to finish within our timeout constraints. We impute
missing values with just zeros, since ML accuracy is orthog-
onal to our focus. SparseCriteo retains the target and 4
categorical variables, which are pre-converted with one-hot
encoding [15]. The resulting data matrix has 71, 000 fea-
tures with a sparsity of 0.0172%. Since Criteo’s data usage
agreement does not authorize data redistribution, we have
released all of our scripts for downloading, pre-processing,
cleaning, and obtaining the above two benchmark dataset
versions on our project webpage to aid reproducibility.

We compare the scalability of the LA-based and native
implementations of OLS and LR for MADlib, MLlib, and
SystemML on our cluster by varying the number of cluster

nodes from one to eight. We skip GNMF and HRSE be-
cause most of these systems do not have native implemen-
tations these algorithms. SystemML’s native LR and OLS
use a hybrid conjugate gradient-trust region optimization
algorithm. MLlib’s native LR uses L-BFGS, while its native
OLS uses IRLS. MADlib’s native LR offers a choice between
conjugate gradient, iteratively reweighted least squares, and
SGD. We use SGD, since it has the lowest per-iteration run-
time. MADlib’s native OLS is solved directly as in algo-
rithm 1. Note that these different optimization algorithms
have different convergence properties and thus, one will al-
most surely need different numbers of iterations to reach a
similar ML accuracy. But these properties are orthogonal
to the scalable LA system used, and thus, orthogonal to our
focus. For our experiments, we report the per-iteration run-
time of each iterative algorithm, both LA-based and native,
averaged from three iterations for a more reliable estimate.

Multi-Node - DenseCriteo - Vary Nodes. Figure 17(A)
presents the results. We observe three major trends overall.
First, across the board, the native implementations of LR
and OLS have much lower per-iteration runtimes than the
LA-based implementations (except for SystemML on LR).
Thus, the scalable LA abstractions, especially on MADlib
and MLlib, come at a high performance penalty, which users
should be aware of. Second, at the largest setting of 8 nodes,
all three systems have comparable performance with their
native implementations, while SystemML is the fastest for
LA-based implementations. Both of these trends suggest
that users might be better off using the native implemen-
tations of well-known algorithms such as LR and OLS and
resort to the scalable LA abstractions only if absolutely nec-
essary. Third, all systems exhibit near-linear speedups on
LR (except LA-based LR in SystemML, which is the fastest),
illustrating such speedups are possible at this data scale, but
almost none of them exhibit such speed-ups on OLS (ex-
cept MLlib, which is the slowest). This sub-linearity sug-
gests that communication cost for computing the Gramian
in OLS remains a scalability bottleneck. We note that Sys-
temML internally uses a lower number of partitions on the

9

(A) Dense (B) Sparse

1.0 2.0 4.0 8.0
Nodes

102

103

Se
co

nd
s

(A.i) LR

1.0 2.0 4.0 8.0
Nodes

101

102

103
(B.i) OLS

1.0 2.0 4.0 8.0
Nodes

102

103
(A.ii) LR

1.0 2.0 4.0 8.0
Nodes

102

103
(B.ii) OLS

MADLib (LA) MADLib (Native) MLLib (LA) MLLib (Native) SystemML (Hybrid Native) SystemML (LA) SystemML (Spark Native)

Figure 7: Multi-Node Criteo for LA-based and native implementations of LR and OLS

underlying RDD than does MLlib, which limits the degree of
parallelism and explains the lack of speedup after two nodes
when executing in Spark mode. Increasing the number of
RDD partitions increases parallelism but decreases the size
of each individual task, potentially reducing throughput.

Multi-Node - SparseCriteo - Vary Nodes. Figure 17(B)
presents the results. This plot has much fewer lines than
Figure 17 (A) due to two reasons. First, the LA-based im-
plementations of both MADlib nor MLlib, as well the native
LR and OLS of MADlib were either incapable of running
due to hard-coded dimensionality limits, or they crashed or
timed out! For instance, the Gramian computation offered
by MLlib’s IndexedRowMatrix datatype has a hard limit of
65, 535 columns, which is lower than the 70, 000 features in
SparseCriteo. Among the LA-based implementations, only
SystemML finished within the timeout but its runtimes were
much higher than MLlib’s and SystemML’s respective native
implementations, which obfuscated the trends. The large
drop in Spark runtime between 1 and 2 nodes is because
Spark must use disk cache in the single node configuration,
while the multi-node configurations can use memory only.

5. ANALYSIS AND DISCUSSION
We first discuss the implementation effort needed for the

ALG tests. We then provide concrete guidance to practi-
tioners on the strengths and weaknesses of all systems and a
summary of the key takeaways from our empirical analysis.
Finally, we discuss some open research questions.

5.1 Algorithm Implementation Effort
To evaluate the implementation effort required for writing

the ALG, one should ideally conduct a user study with real-
world data scientists to obtain a thorough picture of system
usability. In lieu of such an extensive study, we provide a
rough quantification by tabulating the number of “tokens”
needed to implement each algorithm in each system in Ta-
ble 3. We exclude “non-essential” tokens such as calls used
to induce computation by Spark.

Unsurprisingly, SystemML and pbdR generally had the
most parsimonious code, since their languages have a near-
math syntax for LA scripts. In contrast, SciDB generally
had the most verbose code mainly due to the need to write
driver programs in Python and compute matrix inverses us-
ing SVD. MADlib’s verbosity stems from its requirement of
writing out each matrix operator as a separate PL/SQL call.
Finally, MLlib’s verbosity is because it does not yet provide

Table 3: Tokens for Implementation of ALG Tests.
System LR OLS NMF HRSE

pbdR 42 10 49 17
SystemML 40 10 44 32

MLlib 83 26 40 35
MADlib 96 89 191 103
SciDB 109 103 183 138

a few basic LA operators in its API, which users are forced
to write, and because of the need to inject type hints.

5.2 Guidelines for Practitioners
We now summarize each system’s strengths and weak-

nesses. We organize our discussion around the practical dif-
ficulties we faced when implementing the ML algorithms in
3.1.3 and specifically address the following questions. How
difficult is system setup and configuration tuning? How ro-
bust is the support for large sparse data? To what extent
is physical data independence supported? Is there support
for ad hoc feature engineering/data pre-processing pipelines
that precede ML training? Are fault tolerance and auto-
matic disk spills supported? We elide discussion of the
single-node tools (R, NumPy, and TensorFlow), since they
are generally well known to practitioners.

pbdR. We found tuning pbdR to be simple. Default pa-
rameters yielded high performance in most cases. As of
this writing, pbdR does not support sparse data. It also
has poor support for data I/O; users will likely need to im-
plement custom data readers/writers. It provides a high
level of physical data independence; most conventional R
scripts can be ported to pbdR with little effort. But pbdR
lacks support for complex feature engineering pipelines that
Scikit-learn and Spark support. It does not support fault
tolerance or automatic disk spills. It also supports only a
small subset of R’s native ML implementations; users will
need to manually re-implement many existing algorithms
available in single node R. Overall, pbdR is best suited to
users who want to rapidly prototype new LA-based analysis
algorithms at scale.

MLlib. We found tuning MLlib to be highly complex. We
found that MLlib often crashed or exhibited very poor per-
formance with default tuning settings. Furthermore, we
found that tuning settings were often workload specific and
could only be determined through a tedious process of trial
and error. MLlib supports sparse matrix types, but it some-

10

times densifies data during execution, degrading performance.
Physical data independence is limited as users must manu-
ally tune partitioning, caching behavior, and select from a
set of matrix data structures supporting inconsistent opera-
tors. Moreover, some ALG tasks required us to write Scala
code to type cast data. The Spark ecosystem offers excel-
lent support for data pre-processing and feature engineering
pipelines at scale, fault tolerance, and disk spills in many
settings. MLlib’s native ML implementations were typically
faster than LA-based implementations, but we encountered
scalability issues with its matrix types, especially for sparse
data. Overall, MLlib is best suited to users who require ro-
bust support for complex data pre-processing but are happy
with canned ML algorithm implementations.

SystemML. We found tuning SystemML to be simpler
than MLlib, since it abstracts away data layout and caching
decisions. SystemML has generally good support for sparse
data, but the metadata overheads for empty data blocks are
non-trivial and caused performance and scalability issues in
some cases. SystemML offers APIs to interpolate between
Spark and DML. This allows users to leverage the robust
support for data pre-processing offered by the Spark ecosys-
tem, while employing DML’s higher level LA abstraction.
Since SystemML uses Spark RDDs, it inherits Spark’s fault
tolerance and disk spill capabilities. SystemML’s native ML
implementations typically had higher runtimes (per itera-
tion) than the LA-based versions in our ALG tests, but
on datasets with low d, its native ML implementations can
typically converge in fewer iterations. Overall, SystemML is
best suited to users who want to deploy custom LA-based
ML algorithms in a production environment where robust
feature pre-processing pipelines and fault-tolerance are es-
sential.

MADlib. We found tuning MADlib on Greenplum to be
relatively simple but laborious. There is not much concrete
advice on tuning the number of Greenplum segments per
node [10]. Determining the optimal number of segments
required manually re-initializing and loading the database
which was labor-intensive. MADlib has generally good sup-
port for sparse data and was competitive on the MAT tests
with sparse data. However, it suffers from a serious scalabil-
ity bottleneck due to a hard limit of 1 GB imposed on the
maximum size of an array by PostgreSQL. MADlib’s use of
an RDBMS gives it a reasonable level of physical data inde-
pendence, since data partitioning and caching are abstracted
away. However, interleaving table creation in SQL and LA
computations might be unintuitive for many ML-oriented
data scientists. The RDBMS offers excellent support for
data pre-processing using SQL, but flexibility for writing fea-
ture engineering pipelines is poorer than Spark. Greenplum
supports fault tolerance and automates disk spills (except
for the array type). MADlib’s native ML implementations
were typically significantly faster than LA-based implemen-
tations and were competitive with the other systems com-
pared. Overall, MADlib is well suited to users with large
RDBMS-resident datasets and who are happy with canned
ML algorithm implementations.

SciDB. Similar to MADlib, tuning SciDB is simple but te-
dious. SciDB requires tuning (at a minimum) the number of
DB instances used and the partition size of matrices. While
it has support for sparse matrices, it densifies them when

computing SVD and GMM. Surprisingly, GMM and SVD
are the only major LA operators provided by SciDB in the
distributed setting. This forces users to manually implement
other LA operators using these building blocks. SciDB does
support automatic disk spills. The community edition of
SciDB does not provide any “canned” ML algorithms. Over-
all, while SciDB is well suited to users that want to manage
large multi-dimensional array data, it requires a lot of im-
plementation effort on the part of the user when performing
non-trivial LA-based ML algorithms.

5.3 Key Takeaways
We now provide a brief summary of the key insights on

system design we gleaned from our experimental analysis
and experience using these tools.

(1) Transparently switching between execution in local
and distributed mode improves performance and reduces
user effort. Recent surveys of data scientists show that a
majority work with datasets that could fit on a beefy com-
modity node’s memory [12, 31]. By providing APIs that
work mostly seamlessly in both local and distributed mode,
SystemML attained good performance on smaller datasets
without requiring us to re-implement code for scaling it to
large datasets.

(2) Automatically detecting LA pipeline optimizations such
as reordering matrix multiplication chains and multiplica-
tion of a dense matrix with a diagonal matrix (as in HRSE)
yields performance benefits and reduces user effort. Once
again, only SystemML detected such optimization oppor-
tunities automatically. The other systems required us to
hand-optimize multiplication orders, which often required
trudging through their documentation.

(3) Intermediate results should not be needlessly mate-
rialized and computations should be pipelined. MADlib’s
performance suffered from the need to write all intermedi-
ate results to disk only to read them again in the next line
of code. This cripples the RDBMS’s ability to perform any
LA-specific inter-operator optimizations.

(4) Abstractions that purport to support physical data
independence must lead to real reductions in user coding
effort. SystemML and pbdR both provide strong physical
data independence by offering only a single logical “matrix”
data type. In contrast, MLlib has too many matrix types
with inconsistent APIs that yield dramatically different per-
formance depending on the LA operation. This forces users
to experiment with different matrix types and to manually
implement LA operators not supported on a chosen type.

5.4 Open Research Questions
Extrapolating from our points above, we identify a few

key gaps that require more research from the data systems
community. We discuss four major groups of issues.

Better Support for Large Sparse Data. None of com-
pared systems offered the coveted combination of strong
physical data independence and high performance at scale
for large sparse data, which are increasingly common in ML
applications. MLlib and TensorFlow have relatively poor
physical data independence, and while pbdR is a strong
baseline for dense data, it lacks support for sparse data. Sys-
temML offers perhaps the best combination so far for large
sparse data, but it too has high metadata overhead in some

11

cases. Overall, more work is needed for fully supporting
sparse data for efficient and scalable LA, including optimiz-
ing data layout, staging computations and communication,
and managing caching for LA scripts. This relates to the
challenging problem of predicting sparsity of intermediates.

Auto-tuning Data Layout and System Parameters.
The promise of physical data independence means users
should not have to expend much effort for tuning data lay-
out and system parameters. Yet, most systems required us
to tweak one or more of such parameters; some just crashed
without such tuning. For instance, MLlib required manually
tuning partitioning and caching commands, while MADlib
required several data layout decisions for interleaving LA
scripts with table creation in SQL. Such low-level decisions
are likely to be unintuitive for statistical or ML-oriented
users. MLlib and TensorFlow also require lower-level pro-
gramming skills in Python (or Scala for MLlib) to resolve
such issues. SystemML offers perhaps the most automa-
tion of such decisions, but its dependence on Spark neces-
sitates some memory-related tuning. Overall, more work is
still needed to achieve true physical data independence for
scalable LA. Extending the lessons of auto-tuning from the
RDBMS and MapReduce worlds (e.g., [51, 78]) to scalable
LA is another avenue for new research.

Multi-node “COST” and Parallelism Models. A
surprising takeaway relates to the bedrock of database sys-
tems: multi-node data parallelism. Conventional wisdom
has that using many cheap nodes is likely better than fewer
expensive beefy nodes, even for dozens of GBs. But as our
Criteo results show, the speedup curves sometimes flatten
quickly, at least for some of the compared algorithm im-
plementations. This issue is the multi-node version of the
“COST” factor in [63]. It is not clear if this issue will be
mitigated at larger scales (TBs or PBs), since that would
require even more nodes to get more total memory (at least
for SystemML and MLlib). In turn, that could raise commu-
nication costs for LA operations, as well as associated meta-
data and query processing overheads. Furthermore, recent
surveys of data science practitioners show that about 70%
analyze datasets under only 100 GB [12, 31]. Thus, while
faster multi-node data-parallel LA implementations are use-
ful, we think a more pressing research challenge is to support
transparent scalability for hybrid data and task parallelism.
Such support is useful for crucial meta-level ML model se-
lection tasks such as hyper-parameter tuning [31,53,55,74].
A recent Spark-TensorFlow integration does support task-
parallel hyperparameter-tuning for neural networks but only
for small datasets that can be broadcasted [6]. SystemML
also provides framework for multi-node task parallelism, but
does not automate hyperparameter tuning [33]. A related
research question is determining the optimal cluster size for
a given dataset and LA script, similar to how [74] sizes clus-
ters for a few specific ML algorithms.

Including ML Accuracy for Evaluation. The faster
performance of MLlib’s and MADlib’s native ML imple-
mentations compared to their LA-based versions suggests
that including ML accuracy as a criterion could substan-
tially alter the relative performance landscape. But it is
non-trivial to standardize comparisons of both runtimes and
ML accuracy simultaneously because the latter is inextri-
cably tied to hyper-parameter tuning, which is usually a

non-smooth and non-convex meta-level optimization prob-
lem [74]. A given system will likely fall on multiple points on
the accuracy-runtime Pareto frontier for different datasets,
ML algorithms, and hyperparameter-tuning choices, which
makes apples-to-apples comparisons between systems hard.
Moreover, different implementations of the same ML task
could have differing hyper-parameters. For instance, how
does one standardize how hyperparameter-tuning should be
done when comparing, say, MADlib’s SGD-based LR with
SystemML’s native LR? Should sub-sampling be allowed to
enable more extensive hyper-parameter tuning? We leave
such questions to future work but note that there is grow-
ing interest in Pareto frontier-based benchmarks, at least
for deep learning tasks, although they do not yet account
for the costs of hyper-parameter tuning [38].

6. OTHER RELATED WORK
Benchmarks of LA Packages. LA packages such as
BLAS, LAPACK, ScaLAPACK, and Eigen have been ex-
tensively benchmarked [28, 30, 41, 42, 58, 67]. For instance,
the LINPACK benchmark focuses on the efficiency (mea-
sured in MFLOPs per second) of solving a system of lin-
ear equations [40, 57]. BLAS has a long history of develop-
ment, while LAPACK and ScaLAPACK build upon BLAS.
Numerous scalable LA tools were subsequently built and
benchmarked, including multicore-specific implementations
in PLASMA [57] and numerous implementations to exploit
GPUs and other hardware accelerators. There is a long
line of work by the high-performance computing and super-
computing community on building and benchmarking dis-
tributed LA frameworks, primarily for scientific computing
applications [43,57]. Such implementations typically rely on
custom compilers and communication frameworks. In con-
trast, our works focuses on a comprehensive comparative
evaluation of recent scalable LA systems built on top of stan-
dard data systems (MADlib, MLlib, SystemML) along with
TensorFlow on an even footing. We also include R, NumPy,
and pbdR/ScaLAPACK as strong baselines. Recent work
has also profiled R to understand its memory usage and ex-
ecution overheads but their goal was to improve single-node
R, not comparing scalable LA tools [75].

Comparisons of Analytics Systems. MLlib, SystemML,
MADlib, and TensorFlow were released in their current form
only in the last four years. While their reference publications
show several results [27,32,50,65,76], there is no uniformity
in the workloads, data scales, and computational environ-
ments studied. Our work fills this crucial gap in the litera-
ture by systematically comparing them on an even footing.
Recent work has also evaluated the performance of Apache
Mahout Samsara but only for a few operations [72]. [64]
compared SciDB [34], Myria [79], Spark, and TensorFlow
for a specific scientific image processing task but not general
LA or ML workloads. [35] compare Spark, GraphLab [60],
SimSQL [36], and Giraph [3] for Bayesian ML models im-
plemented using lower-level abstractions of such systems;
they did not evaluate general LA or LA-based ML work-
loads. [31] compared MLlib’s native ML implementations
with single-node tools such as Vowpal Wabbit [22] to un-
derstand the COST factor for distributed ML. One of our
findings is similar in spirit but our work is more general,
since we cover scalable LA and LA-based data analytics
workloads, not just a few specific ML algorithms. We also

12

include MADlib, SystemML, and the oft-ignored pbdR/S-
caLAPACK in our study. Finally, [38] introduce new bench-
mark criteria for comparing deep learning tools/models on
both accuracy and monetary cost for some image and text
prediction tasks. However, it does not yet cover bulk LA
workloads or structured data analytics. Thus, overall, all
these prior benchmarking efforts are largely orthogonal to
our work.

Acknowledgments. This work was supported in part by
Faculty Research Award gifts from Google and Opera Solu-
tions. We thank the members of UC San Diego’s Database
Lab for their feedback on this work. We thank the develop-
ers of MADlib, SciDB, and SystemML for helpful conversa-
tions about their respective systems.

13

7. REFERENCES

[1] 2017 Big Data Analytics Market Survey Summary.
https://www.forbes.com/sites/louiscolumbus/

2017/12/24/

53-of-companies-are-adopting-big-data-analytics/

#4b513fce39a1. Accessed September, 2018.

[2] Amazon Web Services ML.
https://aws.amazon.com/machine-learning/.
Accessed September, 2018.

[3] Apache Giraph. http://giraph.apache.org.
Accessed September, 2018.

[4] Apache SystemML Webpage.
https://systemml.apache.org/. Accessed
September, 2018.

[5] Criteo Terrabyte Click Logs. http://labs.criteo.
com/2013/12/download-terabyte-click-logs/.
Accessed September, 2018.

[6] Deep Learning with Apache Spark and TensorFlow.
https://databricks.com/blog/2016/01/25/

deep-learning-with-apache-spark-and-tensorflow.

html. Accessed September, 2018.

[7] Distributed TensorFlow Webpage.
https://www.tensorflow.org/deploy/distributed.
Accessed September, 2018.

[8] Gartner Report on Analytics.
gartner.com/it/page.jsp?id=1971516. Accessed
September, 2018.

[9] Google Cloud ML Engine.
https://cloud.google.com/ml-engine/. Accessed
September, 2018.

[10] Greenplum Tuning Guidelines.
https://gpdb.docs.pivotal.io/530/admin_guide/

intro/arch_overview.html#arch_segments. Accessed
September, 2018.

[11] Kaggle Survey: The State of Data Science and ML.
https://www.kaggle.com/surveys/2017. Accessed
September, 2018.

[12] KDNuggets Poll of Data Scientists for Largest Dataset
Analyzed. https://www.kdnuggets.com/2016/11/
poll-results-largest-dataset-analyzed.html.
Accessed September, 2018.

[13] Microsoft Azure ML. https://azure.microsoft.com/
en-us/services/machine-learning-studio/.
Accessed September, 2018.

[14] Microsoft Revolution R.
http://blog.revolutionanalytics.com/2016/01/

microsoft-r-open.html. Accessed September, 2018.

[15] One-Hot Encoding Example in Scikit-learn. http:
//scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.OneHotEncoder.html.
Accessed September, 2018.

[16] Oracle R Enterprise. www.oracle.com/technetwork/
database/database-technologies/r/r-enterprise/

overview/index.html. Accessed September, 2018.

[17] Project R Webpage. r-project.org. Accessed
September, 2018.

[18] SparkR Webpage. spark.apache.org/R. Accessed
September, 2018.

[19] TensorFlow Accelerated Linear Algebra (XLA).
https://www.tensorflow.org/performance/xla/.

[20] TensorFlow Webpage.
https://www.tensorflow.org/.

[21] The Comprehensive R Archive Networks.
https://cran.r-project.org/.

[22] Vowpal Wabbit. https:
//github.com/JohnLangford/vowpal_wabbit/wiki.
Accessed September, 2018.

[23] Install greenplum oss on ubuntu, 2017.
https://greenplum.org/

install-greenplum-oss-on-ubuntu/.

[24] Installing tensorflow from source, 2017. https:
//www.tensorflow.org/install/install_sources.

[25] Spark mllib data types - rdd based api, 2017.
https://spark.apache.org/docs/latest/

mllib-data-types.html#

data-types-rdd-based-api.

[26] Using native blas in systemml, 2017. https:
//apache.github.io/systemml/native-backend.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: A system for large-scale machine
learning. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and
Implementation. USENIX Association, 2016.

[28] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition,
1999.

[29] M. W. Berry, M. Browne, A. N. Langville, V. P.
Pauca, and R. J. Plemmons. Algorithms and
applications for approximate nonnegative matrix
factorization. Computational Statistics & Data
Analysis, 52(1):155–173, 2007.

[30] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia,
PA, 1997.

[31] C. Boden, T. Rabl, and V. Markl. Distributed
Machine Learning - but at what COST? In Machine
Learning Systems Workshop at the 2017 Conference
on Neural Information Processing Systems, 2017.

[32] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V.
Evfimievski, F. M. Manshadi, N. Pansare,
B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, and
S. Tatikonda. SystemML: Declarative machine
learning on spark. PVLDB, 9(13):1425–1436, 2016.

[33] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. R. Burdick, and S. Vaithyanathan. Hybrid
parallelization strategies for large-scale machine
learning in systemml. PVLDB, 7(7):553–564, 2014.

[34] P. G. Brown. Overview of SciDB: Large scale array
storage, processing and analysis. In Proceedings of the
2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 963–968,
New York, NY, USA, 2010. ACM.

14

https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://aws.amazon.com/machine-learning/
http://giraph.apache.org
https://systemml.apache.org/
http://labs.criteo.com/2013/12/download-terabyte-click-logs/
http://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://www.tensorflow.org/deploy/distributed
gartner.com/it/page.jsp?id=1971516
https://cloud.google.com/ml-engine/
https://gpdb.docs.pivotal.io/530/admin_guide/intro/arch_overview.html#arch_segments
https://gpdb.docs.pivotal.io/530/admin_guide/intro/arch_overview.html#arch_segments
https://www.kaggle.com/surveys/2017
https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html
https://www.kdnuggets.com/2016/11/poll-results-largest-dataset-analyzed.html
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
http://blog.revolutionanalytics.com/2016/01/microsoft-r-open.html
http://blog.revolutionanalytics.com/2016/01/microsoft-r-open.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
www.oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
r-project.org
spark.apache.org/R
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/
https://cran.r-project.org/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://greenplum.org/install-greenplum-oss-on-ubuntu/
https://greenplum.org/install-greenplum-oss-on-ubuntu/
https://www.tensorflow.org/install/install_sources
https://www.tensorflow.org/install/install_sources
https://spark.apache.org/docs/latest/mllib-data-types.html#data-types-rdd-based-api
https://spark.apache.org/docs/latest/mllib-data-types.html#data-types-rdd-based-api
https://spark.apache.org/docs/latest/mllib-data-types.html#data-types-rdd-based-api
https://apache.github.io/systemml/native-backend
https://apache.github.io/systemml/native-backend

[35] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and
C. Jermaine. A comparison of platforms for
implementing and running very large scale machine
learning algorithms. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 1371–1382, New York, NY,
USA, 2014. ACM.

[36] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas,
and C. Jermaine. Simulation of database-valued
markov chains using SimSQL. In Proceedings of the
2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, pages 637–648,
New York, NY, USA, 2013. ACM.

[37] L. Chen, A. Kumar, J. Naughton, and J. M. Patel.
Towards linear algebra over normalized data. PVLDB,
10(11):1214–1225, 2017.

[38] C. Coleman, D. Narayanan, D. Kang, T. Zhao,
J. Zhang, L. Nardi, P. Bailis, K. Olukotun, C. Ré, and
M. Zaharia. DAWNBench: An end-to-end deep
learning benchmark and competition. In Machine
Learning Systems Workshop at the 2017 Conference
on Neural Information Processing Systems, 2017.

[39] J. Dongarra, J. Du Croz, S. Hammarling, and
R. Hanson. An extended set of fortran basic linear
algebra subprograms: Model implementation and test
programs. Technical report, Argonne National Lab.,
IL (USA), 1987.

[40] J. Dongarra, C. Moler, J. Bunch, and G. Stewart.
LINPACK Users’ Guide. Society for Industrial and
Applied Mathematics, 1979.

[41] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S.
Duff. A set of level 3 basic linear algebra subprograms.
ACM Transactions on Mathematical Software,
16(1):1–17, 1990.

[42] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J.
Hanson. An extended set of fortran basic linear
algebra subprograms. ACM Transactions on
Mathematical Software, 14(1):1–17, 1988.

[43] J. J. Dongarra, L. S. Duff, D. C. Sorensen, and
H. A. V. Vorst. Numerical Linear Algebra for High
Performance Computers. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1998.

[44] J. Friedman, T. Hastie, and R. Tibshirani. The
elements of statistical learning, volume 1. Springer
series in statistics New York, 2001.

[45] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, 2004.

[46] A. Ghoting, R. Krishnamurthy, E. P. D. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. SystemML: Declarative
machine learning on mapreduce. In 2011 IEEE 27th
International Conference on Data Engineering, pages
231–242, 2011.

[47] N. Gillis. Introduction to nonnegative matrix
factorization. SIAG/OPT Views and News,
25(1):7–16, 2017.

[48] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[49] D. Hall and D. Ramage. Breeze Documentation, 2016.
https://github.com/scalanlp/breeze/wiki.

[50] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib analytics library:
Or MAD skills, the SQL. PVLDB, 5(12):1700–1711,
2012.

[51] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong,
F. B. Cetin, and S. Babu. Starfish: A self-tuning
system for big data analytics. In Proceedings of the
Fifth Biennial Conference on Innovative Data Systems
Research, pages 261–272, 2011.

[52] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean,
B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon. In-datacenter
performance analysis of a tensor processing unit. In
Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 1–12,
New York, NY, USA, 2017. ACM.

[53] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. MLbase: A
distributed machine-learning system. In Proceedings of
the Sixth Biennial Conference on Innovative Data
Systems Research, 2013.

[54] A. Kumar, M. Boehm, and J. Yang. Data
management in machine learning: Challenges,
techniques, and systems. In Proceedings of the 2017
ACM International Conference on Management of
Data, SIGMOD ’17, pages 1717–1722. ACM, 2017.

[55] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.
Model selection management systems: The next
frontier of advanced analytics. ACM SIGMOD Record,
44(4):17–22, 2016.

[56] A. Kumar, J. Naughton, and J. M. Patel. Learning
generalized linear models over normalized data. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15,
pages 1969–1984, New York, NY, USA, 2015. ACM.

[57] J. Kurzak, D. A. Bader, and J. Dongarra. Scientific
Computing with Multicore and Accelerators. CRC
Press, Inc., Boca Raton, FL, USA, 2010.

[58] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh. Basic linear algebra subprograms for Fortran
usage. ACM Transactions on Mathematical Software,
5(3):308–323, 1979.

15

https://github.com/scalanlp/breeze/wiki

[59] D. D. Lee and H. S. Seung. Learning the parts of
objects by non-negative matrix factorization. Nature,
401:788, 1999.

[60] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
framework for parallel machine learning. In
Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence, pages 340–349,
2010.

[61] S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and
C. Jermaine. Scalable linear algebra on a relational
database system. In 2017 IEEE 33rd International
Conference on Data Engineering, pages 523–534, 2017.

[62] MADLib Development Team. MADLib User
Documentation. http://madlib.incubator.apache.
org/docs/latest/index.html. Accessed September,
2018.

[63] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what COST? In 15th Workshop on Hot Topics
in Operating Systems. USENIX Association, 2015.

[64] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan,
A. Cheung, M. Balazinska, A. Rokem, A. Connolly,
J. Vanderplas, and Y. AlSayyad. Comparative
evaluation of big-data systems on scientific image
analytics workloads. PVLDB, 10(11):1226–1237, 2017.

[65] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al. MLlib: Machine learning in
Apache Spark. The Journal of Machine Learning
Research, 17(1):1235–1241, 2016.

[66] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, first edition, 1997.

[67] MKL Development Team. Intel math kernel library
developer reference. https://software.intel.com/
en-us/articles/mkl-reference-manual. Accessed
September, 2018.

[68] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, NY, USA, second edition, 2006.

[69] G. Ostrouchov, W.-C. Chen, D. Schmidt, and
P. Patel. Programming with Big Data in R, 2012.
http://r-pbd.org/, Accessed September, 2018.

[70] N. Pansare, M. Dusenberry, N. Jindal, M. Boehm,
B. Reinwald, and P. Sen. Deep learning with Apache
SystemML. In SysML, 2018.

[71] R. Ricci, E. Eide, and The CloudLab Team.
Introducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), Dec. 2014.

[72] S. Schelter, A. Palumbo, S. Quinn, S. Marthi, and
A. Musselman. Samsara: Declarative machine learning
on distributed dataflow systems. In Machine Learning
Systems Workshop at the 2016 Conference on Neural
Information Processing Systems, 2016.

[73] D. Schmidt, W.-C. Chen, G. Ostrouchov, and
P. Patel. A Quick Guide for the pbdDMAT Package. R
package vignette.

[74] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin,
M. I. Jordan, and T. Kraska. Automating model
search for large scale machine learning. In Proceedings
of the Sixth ACM Symposium on Cloud Computing,
SoCC ’15, pages 368–380. ACM, 2015.

[75] S. Sridharan and J. M. Patel. Profiling R on a
contemporary processor. PVLDB, 8(2):173–184, 2014.

[76] R. Taft, M. Vartak, N. R. Satish, N. Sundaram,
S. Madden, and M. Stonebraker. Genbase: A complex
analytics genomics benchmark. In Proceedings of the
2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’14, pages 177–188,
New York, NY, USA, 2014. ACM.

[77] A. Thomas and A. Kumar. A comparative evaluation
of systems for scalable linear algebra-based analytics -
technical report. https:
//adalabucsd.github.io/papers/TR_2018_SLAB.pdf.

[78] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning
through large-scale machine learning. In Proceedings
of the 2017 ACM SIGMOD International Conference
on Management of Data, SIGMOD’17, pages
1009–1024, New York, NY, USA, 2017. ACM.

[79] J. Wang, T. Baker, M. Balazinska, D. Halperin,
B. Haynes, B. Howe, D. Hutchison, S. Jain, R. Maas,
P. Mehta, D. Moritz, B. Myers, J. Ortiz, D. Suciu,
A. Whitaker, and S. Xu. The myria big data
management and analytics system and cloud services.
In CIDR 2017, 8th Biennial Conference on Innovative
Data Systems Research, 2017.

[80] H. White. Using least squares to approximate
unknown regression functions. In International
Economic Review, pages 149–170. JSTOR, 1980.

[81] R. B. Zadeh and G. Carlsson. Dimension independent
matrix square using mapreduce. arXiv preprint
arXiv:1304.1467, 2013.

[82] Y. Zhang, W. Zhang, and J. Yang. I/o-efficient
statistical computing with riot. In 2010 IEEE 26th
International Conference on Data Engineering, pages
1157–1160, 2010.

16

http://madlib.incubator.apache.org/docs/latest/index.html
http://madlib.incubator.apache.org/docs/latest/index.html
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
http://r-pbd.org/
https://adalabucsd.github.io/papers/TR_2018_SLAB.pdf
https://adalabucsd.github.io/papers/TR_2018_SLAB.pdf

Program 1: OLS in NumPy
def reg (X, y) :

return a lg . s o l v e (X.T. dot (X) , X.T. dot (y))

8. APPENDIX

8.1 Additional Background on Systems Com-
pared

Table 4 presents a summary of salient characteristics of
each system in the slate we compare. We additionally pro-
vide example implementations of OLS in each of these sys-
tems. Note that token counts may not agree exactly with
the numbers reported in table 3 in the body. The example
programs here have been reformatted to display cleanly and
exclude some “utility” routines which are needed to make
them work in practice. The following sections discuss these
examples.

Numpy, R. R and Python’s NumPy stack treat matrices
as first class citizens and provide a rich set of built-in LA
operations and algorithms. Most LA operations in R and
NumPy are just thin wrappers around highly optimized LA-
PACK and BLAS routines [28,39]. R and Python also pro-
vide robust visualization/plotting libraries (e.g., ggplot and
matplotlib) and are Turing-complete. Since R’s syntax is
close to math notation, it is especially popular among data
scientists with a statistics background and in the domain
sciences. In fact, the open source repository CRAN con-
tains numerous R libraries contributed by such researchers
and practitioners [21]. NumPy, in contrast, is typically more
popular among data scientists with a CS background [11]; it
uses a function call-oriented/object oriented syntax. Both
R and Python are interpreted and dynamically typed, which
makes inter-operator optimization of LA scripts challenging.

Program 1 shows the implementation OLS in NumPy.
Compare this script to program 2 which presents the cor-
responding algorithm in R/pbdR. The init.grid() and
finalize() statements are used by pbdR to initialize and
finalize the MPI communicator. The pure R implementa-
tion is identical less these statements. These scripts also
highlight the differing paradigms between R and NumPy.
NumPy favors an object oriented syntax while R’s is imper-
ative.

pbdR (ScaLAPACK) ScaLAPACK extends LAPACK to
the distributed memory setting by re-implementing many
LA operations and algorithms using a block partitioning
scheme to distribute data matrices [30]. It follows the “same
program multiple data” paradigm in which a single logical
program is executed by multiple workers (each worker cor-
responds to one core). A matrix is partitioned in a highly
flexible “block-cyclic” fashion (similar to round robin), with
each worker process allocated a subset of the blocks. This
allocation helps load-balance computation and communica-
tion costs regardless of the access patterns of the LA oper-
ations. The block size is a user-given parameter. Figure 8
gives an example of the block-cycling partitioning scheme
from [73] for a 9 × 9 matrix with a grid of 6 workers and
blocks of size 2× 2.

In general, a skewed allocation can cause performance is-
sues. Interprocess communication is handled by the BLACS

Figure 8: Block-cyclic matrix partitioning [73].
Data matrix with blocks shown

9x9

Worker
grid pattern

Data blocks of each worker

5x4 5x3 5x2

4x4 4x3 4x2

Program 2: OLS in pbdR
l ibrary (pbdDMAT)
i n i t . grid ()

reg <− function (X, y) {
b <− solve (t (X) %∗% X, t (X) %∗% y)
return (b)

}

f i n a l i z e ()

library with an LA-specific message passing API. Overall,
both ScaLAPACK and BLACS are low-level libraries that
require knowledge of C, FORTRAN, and the intricacies of
parallel computing. Thankfully, the “Programming with Big
Data in R” (pbdR) library provides higher level R inter-
faces to ScaLAPACK and OpenMPI [69]. The “distributed
matrix” package in pbdR overloads several built-in LA op-
erations in R to enable transparent distributed execution.
However, unlike regular R scripts, which can run interac-
tively in a REPL, pbdR compiles programs into OpenMPI
batch jobs that are then submitted for execution [45].

SystemML. Introduced for Hadoop and then ported to
Spark, SystemML is perhaps the most mature scalable LA
system [32]. We focus on the recommended Spark ver-
sion [4]. SystemML offers a “declarative” language named
DML with R-like syntax to express LA scripts (there are also
APIs in Python and Scala). DML offers full physical data
independence, i.e., users do not decide data layout formats
or low-level execution details. SystemML stores matrices in
custom binary formats using Spark RDDs, in particular, as
block-partitioned matrices with each block stored in a tuple.

Inspired by RDBMSs, SystemML has an optimizing com-
piler that converts a DML script to Spark jobs by applying a
suite of logical LA-specific rewrite optimizations and phys-
ical execution optimizations. The first level of this trans-
lation produces a DAG of so-called “high level operations”
(HOPs), which represent basic LA operations. Each HOP is
associated with one or more physical execution plans called
“low-level operations” (LOPs), which are optimized for data
and system characteristics. A HOP-DAG is converted to a
LOP-DAG based on both rules and cost-based optimizations
to minimize runtimes under memory constraints. LOPs are
executed as either RDD operations or in-memory computa-
tions in the driver program. SystemML also includes more
advanced optimizations such as dead code elimination and
operation fusion to reduce data access costs.

As can be seen in program 3, SystemML’s syntax is virtu-
ally identical to pbdR (and yields comparable performance!).
SystemML also allows users to pass metadata about input
matrices which can help the optimizer determine better ex-
ecution plans.

17

Program 3: OLS in SystemML
reg = function (matrix [double] X,

matrix [double] y)
return (matrix [double] b) {
b = solve (t (X) %∗% X, t (X) %∗% y)

}

TensorFlow. TensorFlow (TF) is a framework for express-
ing ML algorithms, especially neural networks [27]. It has
APIs in Python and C++ for both LA primitives and canned
ML implementations; we use the Python API. While TF
is primarily meant for easily expressing and training com-
plex neural network architectures using mini-batch stochas-
tic gradient decent (SGD), it can also be used for bulk LA-
based algorithms in the single-node setting. Models in TF
are expressed as “computational graphs” in which nodes rep-
resent operations over multi-dimensional arrays (“tensors”)
and edges represent dataflow. A TF program has two stages.
First, the computational graph is specified and placed on
available compute devices. Then, a node is “run” (not nec-
essarily a terminal node), with its inputs made available.
Separating these stages enables TF to use lazy evaluation
to compile the graph and apply some holistic optimizations
within Python’s interpreted environment.

TF’s LA API offers a set of high-level routines (“oper-
ators”), each with one or more physical implementations
(“kernels”) for specific compute devices. TF supports many
device backends, including CPUs, GPUs, and Android smart
phones. User can assign different operations to different de-
vices; if such assignments are not specified, TF optimizes
the placement to reduce data movement and runtimes. TF
also detects and removes redundant computations, but over-
all, its LA-specific optimizations are not yet as extensive as
SystemML’s. Also, TF does not yet offer distributed bulk
LA operations. Thus, we consider TF a single-node tool.
TF is under intense development, with optimizations such
as XLA [19] and new extensions being introduced. We refer
the interested reader to their webpage for the latest [20].

Program 4 presents OLS in TensorFlow’s low level LA
API. While TF bears some superficial similarity to NumPy,
its syntax and programming model are quire different. The
lines of code between the graph declaration and the tf.Session()
constructor merely place operations on the computation graph.
When run() is called on an object from the graph, Tensor-
Flow compiles the graph into an execution plan and runs
the actual computation.

MADlib. MADLib is a library that implements both LA
primitives and popular ML algorithms over PostgreSQL and
the parallel RDBMS Greenplum [50]. Dense matrices are
stored as tables with two attributes: an integer row number
(the key) and a value attribute that uses the abstract data
type ARRAY. Sparse matrices are stored as tables with three
attributes: row number, column number, and cell value.
Thus, MADlib expresses many LA operations directly in
SQL and exploits the RDBMS for for memory management
and scalability. Low-level in-memory LA operations such as
inner products exploit Eigen [48]. To write LA scripts, one
has to write SQL queries invoking MADlib’s LA routines.
Some LA operations such as certain matrix decompositions,
however, require the dataset to fit entirely in single-node

Program 4: OLS in TensorFlow’s LA API
def reg (Xdata , ydata) :

G = t f . Graph ()
with G. a s d e f a u l t () :

X = t f . p l a c eho ld e r (t f . f l o a t32 ,
shape=Xdata . shape)

y = t f . p l a c eho lde r (t f . f l o a t32 ,
shape=ydata . shape)

b = t f . mat r i x so l v e (
t f . matmul (X, X, t ranspo s e a=True) ,
t f . matmul (X, y , t r an spo s e a=True)

)

i n i t = t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ()
with t f . S e s s i on () as s e s s :

s e s s . run (i n i t)
r e s = s e s s . run (b ,

f e e d d i c t={X: Xdata , y : ydata })

return r e s

Program 5: OLS in MADLib
DROP TABLE IF EXISTS XT
DROP TABLE IF EXISTS XTX
DROP TABLE IF EXISTS XTY
DROP TABLE IF EXISTS XTX INV
DROP TABLE IF EXISTS B

SELECT madlib . matrix mult (
’X ’ , ’ t rans=True ’ , ’X ’ ,NULL, ’XTX’) ;

SELECT madlib . matrix mult (
’X ’ , ’ t rans=True ’ , ’ y ’ ,NULL, ’XTY’) ;

SELECT madlib . mat r i x i nve r s e (
’XTX’ ,NULL, ’XTX INV ’ ,NULL) ;

SELECT madlib . matrix mult (
’XTX INV ’ ,NULL, ’XTY’ ,NULL, ’B ’) ;

memory [62]. Related to MADlib is RIOT-DB [82], which
avoids SQL as a front-end and opts for the so-called “query
generation” approach [54]. A user writes an LA script in R
using RIOT-DB’s datatypes, which is then translated and
optimized (via lazy evaluation) to produce several (procedu-
ral) SQL queries [82]. Also related is the recent SimSQL [61],
which relies on custom user-defined datatypes for block-
partitioned matrices and custom user-defined functions that
implement LA operations.

Program 5 presents an implementation of OLS using MADLib’s
matrix API. Note that it is not possible to pipeline opera-
tions in MADLib as in the other languages. The MADLib
API requires that each intermediate stage of computation
be explicitly materialized. We remark that although this
code explicitly computes the inverse of the Gram matrix,
the number of columns we use is small and so this step re-
mains low cost.

MLlib. MLlib (and the newer SparkML) are libraries that
provide some LA primitives and popular ML algorithms over
Spark. We focus on MLlib, since it is popular among enter-
prise users [1], and since SparkML does not yet support
distributed matrices. Apart from the LocalMatrix datatype
for small data, MLlib offers three main (physical) datatypes
for distributed matrices targeting different data access pat-

18

terns. (1) DistributedRowMatrix (DRM), an RDD with rows
of a logical matrix stored using a LocalVector datatype. (2)
CoordinateMatrix (CM), an RDD with tripes of row num-
ber, column number, and data value (like MADlib’s sparse
matrix table). (3) BlockMatrix (BM), an RDD of matrix
blocks stored using LocalMatrix.

DRM supports multiplication with a LocalMatrix but not
fully distributed matrix multiplication. DRM also supports
scalable matrix decompositions such as SVD and QR. CM
supports no meaningful scalable LA operations except trans-
pose. Users have to cast it to another distributed matrix
type. Sparsity is preserved after casting. BM is the only
type that supports fully distributed matrix multiplication.
The underlying LA operations over local datatypes are im-
plemented using the Breeze library in Scala [49]. MLlib’s
datatypes do not yet support many basic LA operations, in-
cluding scalar-matrix multiplication, norms, and Hadamard
product; users have to implement these using RDD opera-
tions. Also, the three distributed matrix types are not con-
sistent in the set of LA operations they support, e.g., BM
supports transpose but DRM does not, while DRM supports
multiplication by a LocalMatrix but BM does not.

Program 6 presents an implementation of OLS using the
distributed matrix types provided by MLLib. The script
highlights two of the distributed types provided by MLLib.
We store the input matrix X as a IndexedRowMatrix which
represents a distributed matrix using an RDD of local vec-
tors. We selected this datatype because it provides an ex-
tremely efficient routine for computing the Gram matrix.
However, it supports neither transposition nor multiplica-
tion with another distributed matrix and so we must cast
it to a BlockMatrix to transpose and multiply with y. This
highlights several important implementation decisions which
pbdR and SystemML abstract from the user. It is unclear
whether it would be more efficient to simply store every-
thing as a BlockMatrix to begin with and eliminate the step
of casting X. However, then we forgo the optimized rou-
tine to compute a Gram matrix provided by IndexedRow-
Matrix and must make do with the (much) slower general
matrix-matrix multiplication method provided by BlockMa-
trix. Additionally, we could have stored y as an LocalMa-
trix and used the “multiply” method of IndexedRowMatrix
which supports multiplication with a local matrix. However,
then our code would break if y exceeds single node memory.
Even then, we would have to cast X to a CoordinateMatrix
and then back to an IndexedRowMatrix to perform the op-
eration which may result in shuffle. Without testing it is
unclear which approach is better. Finally, we note that it
is necessary to select the block sizes used for the BlockMa-
trix. Naively accepting the default of 1024 × 1024 would
be catastrophic as the blocks are created as sparse matri-
ces, but are promoted to dense during multiplication. This
would then result in significant wasted space. This lack of
strong physical data independence leads to some implemen-
tation headaches with MLLib.

SciDB. Program 7 presents an implementation of OLS in
SciDB’s “array query language.” There are several note-
worthy points about this program. First, it is much more
verbose than the other programs. This is because SciDB
does not provide an operator for solving a linear system or
inverting a matrix directly. This necessitates the use of the
singular value decomposition to compute the inverse. Fur-

Program 6: OLS in MLLib
def reg (X: IndexedRowMatrix ,

y : IndexedRowMatrix) : Matrix = {
val XTX = X. computeGramianMatrix ()
val XTY = X. toBlockMatrix (

1024 ,X. numCols . t o In t) .
t ranspose . mul t ip ly (

y . toBlockMatrix (1024 ,1) , 500
) . toLocalMatr ix

val b = from breeze (
to dense (a s b r e e z e (XTX)) \
to dense (a s b r e e z e (XTY)))

return b
}

Program 7: OLS in SciDB
s t o r e (gemm(X, X, Z , t ransa : true) , XTX) ;

s t o r e (gemm(p ro j e c t (apply (c r o s s j o i n (
t ranspose (gesvd (XTX, ’VT’)) as V,

p r o j e c t (apply (
gesvd (XTX, ’S ’) , s igma inv ,
POW(sigma ,−1)) , s igma inv)

AS SINV , V. i , SINV . i) ,
vsinv , v∗ s igma inv) , vs inv) ,

t ranspose (
gesvd (XTX, ’U ’)) , Z) , XTX INV) ;

gemm(XTX INV, gemm(X, y , Z , t ransa : true) , Z)

thermore, because SciDB operators must return only a sin-
gle table, the decomposition must be performed three times
to compute each constituent matrix! We observe as well
that the gemm operator for matrix-multiplication computes
MN +Q. The final matrix Q is not optional, and the user
must materialize a table of zeros to compute the standard
matrix product.

8.2 Additional Detail on Tuning and Configu-
ration

In the following section we describe the process used to
tune each system and provide results from a series of “mini-
tests” designed to test configuration parameters.

Choice of Linear Algebra Library. Both SystemML and
MLLib use a JVM-based linear algebra library by default,
but allow users to import a system optimized BLAS library
at runtime. Native BLAS may outperform JVM-based im-
plementations depending on the data size and operator and
so we first consider the effect of LA library on SystemML
and MLLib performance. We compile the popular Open-
BLAS library from source following the instructions in [26].
Table 6 shows the effect of using the JVM-based BLAS vs.
OpenBLAS for GMM in the single node setting. We find
only a small and inconsistent effect of using OpenBLAS with
SystemML and so retain the default LA library in all Sys-
temML tests as this makes implementation simpler. Tables
7 and 8 show the effect of using OpenBLAS in the single
node and distributed settings for Spark MLLib. We find
a strong positive effect of using OpenBLAS in the single
node setting, but only small and inconsistent effects in the
distributed setting. For GMM this small benefit is likely

19

Table 4: Key characteristics of systems compared. “Applicable Environments” are the environments the
system was primarily designed for: “SM” is single-node in-memory, “SD” is single-node disk-capable, “DM”
is distributed memory, and “DD” is distributed disk-capable. By “Partial Declarativity,” we mean that
the system optimizes LA scripts only in a limited way or not at all even if it supports alternative physical
implementations of LA operations. “Full Declarativity” means the system optimizes LA scripts both logically
and physically. Base R does not support sparse matrices but user packages fill this gap. TensorFlow has a
sparse matrix library but it has limited support for sparse LA operations.

R ; NumPy MADlib TensorFlow SystemML MLlib

Applicable Environment(s) SM SD, DD SM, DM DM, DD DM, DD
Interface Language(s) R ; Python SQL Python, C++ DM, Python Python, Scala

Storage Back-End In-memory RDBMS Flat files Spark/HDFS Spark/HDFS
Declarativity None Partial Partial Full Partial
Optimization None Cost-Based Cost-Based Cost-Based None

Sparse Matrix Support Yes Yes Partial Yes Partial
Implementation Language C C++/SQL C++ Java/Scala Scala

Linear Algebra Library BLAS Eigen Eigen Apache Commons Math Breeze (JBLAS)

because the BlockMatrix constructor recommended by the
documentation construct sparse matrix blocks [25]. Sparse
matrix computations are not optimized by the native BLAS.
Based on these tests we use OpenBLAS for single node ML-
Lib tests but retain the JVM implementation in the dis-
tributed setting.

Additional Tuning Consideration for Spark MLLib.
An additional consideration with Spark is the number parti-
tions in RDDs underlying its matrix types. Ad-hoc compar-
ison indicated that between 500 and 1000 partitions yielded
good performance. Another important consideration is the
amount of RAM and CPUs allocated to each executor. When
using the standalone cluster manager, Spark calculates the
number of executor instances based on these parameter set-
tings. We tuned these parameters by starting with a single
large executor which was given all memory and CPU avail-
able and then dividing the memory and CPU allocated to
each executor by two until performance stopped improving.
We found that using 3 cores and roughly 20GB of RAM per
executor led to the best performance. With these settings,
Spark allocated eight executors per node. Results from this
mini-benchmark are presented in ??.

In yet another tunable setting, MLLib allows users to ad-
just the number of “mid-dim-splits” used during distributed
matrix multiplication. Tuning this parameter can lead to in-
creased parallelism and reduced shuffle. Table 10 compares
various settings of this parameter. We find 500 mid-dim-
splits to be optimal and so use this number for all distributed
matrix multiplications in MLLib.

SciDB. The key tuning considerations for SciDB are the
number of instances used per node and the size of the sub-
blocks into which arrays are partitioned. Based on our re-
sults in figure 3 we found that 24 instances (1 instance per
core) was generally optimal in the single node setting. In the
eight node cluster, we found that using such a large num-
ber of instances led to substantial overheads. The SciDB
manager instances must broadcast queries to each worker
instance. This can lead to significant overheads on large
clusters. We found that 8 instances per cluster was optimal,
and replicated a benchmark available on the SciDB website
to validate our tuning settings. SciDB requires that matrix

blocks be square for GMM and so we compared block sizes
of 100, 500 and 1000 and found 1000 to be generally optimal.

Greenplum. A key tuning consideration for Greenplum is
the number of segments used per cluster node. Each segment
corresponds to a Postgres database instance which commu-
nicates with other segments to perform work. Too few seg-
ments may result in low parallelism while too many may
lead to excessive communication overhead. Greenplum doc-
umentation states that common practice is to use between
two and eight segments per host. Table 12 compares the
effect of using six, twelve and twenty-four segments per host
on a cluster with eight nodes. We find that six segments per
node yielded the best performance and so use this setting for
all distributed tests. In the single node setting we found that
sixteen to twenty four segments yielded good performance
and so use twenty four segments in the single node setting.
Greenplum also allows users to tune the memory available to
the DBMS. We set gp vmem protect limit=13000 which al-
lows each Postgres instance to use up to 13000MB of RAM.
We note that we saw only very little difference between mod-
ifying this setting and leaving it at its default. Greenplum
additionally allows users to configure memory for individual
queries through use of the SET STATEMENT MEM = ‘X’ com-
mand. We tried various values of statement memory but
found either little effect or that they resulted in memory er-
rors. We therefore leave STATEMENT MEM at its default value
(2000MB).

8.3 Test Environment and Configuration
The following sections discuss relevant installation and

configuration details for each software package used. We
stress that it is not necessary to manually replicate these
steps. Scripts are available which automate configuration of
cluster nodes.

Spark. In the single node setting we compile Spark from
source using the command mvn -DskipTests -Pnetlib-lgpl

clean package in order to take advantage of native BLAS
accelerations. In the distributed setting we use a precom-
piled binary downloaded from Apache. We write all Spark
code using the Scala API and create fat JAR files using
SBT assembly. We run Spark using the standalone clus-
ter manager (as opposed to YARN) and submit JARs us-

20

ing spark-submit. In the single node setting we configure
Spark to import OpenBLAS as the LA backend at runtime.
Instructions to do this are specific to the OS and LA library.
The node configuration script provided in the project repo
provides instructions for Ubuntu 16.04.

OpenBLAS. In the single node setting we compile Open-
BLAS from source as described in [26] and use OpenMP
as the threading implementation. We pull the OpenBLAS
repo at revision 114fc0bae3a and compile using sudo make

USE OPENMP=1. We found it was necessary to manually add
some symbolic links to coax SystemML and MLLib into us-
ing this BLAS.

Greenplum and MADLib. We compile Greenplum from
source as described in the cluster configuration script avail-
able on the project github page. We note that since the
project began, Pivotal has made a PPA for Ubuntu avail-
able which allows Greenplum to be easily installed using
apt-get [23]. Users may wish to try this method first as
compiling Greenplum from source is a non-trivial process.
Following the advice available on the Greenplum github page
we configure several system parameters as described in table
13. We compiled MADLib from source (see install-madlib.sh).
We note that it is important to use GCC/G++ 4.9 which
must be installed separately from the Ubuntu repositories.
Using the default GCC 5.x resulted in errors at runtime.

TensorFlow. We compile TensorFlow from source as de-
scribed in [24]. We do not enable any of the extra packages
available during the “configure” stage of installation and do
not build with GPU support.

SystemML. We compile SystemML from source using re-
vision d91d24a9fa. We built from this version because it
contained patches designed to address an issue we encoun-
tered using sparse matrices. We compiled using mvn clean

package and then manually copied the resulting .jar file to
the /lib folder of each SBT assembly directory. SBT will
then automatically package the JAR with other code. The
precompiled JAR can be obtained by simply downloading
the relevant directories from the project github.

pbdR. We install pbdR using R’s built in package man-
ager. R expects to link to a BLAS library at runtime. In
the distributed setting we install OpenBLAS using apt-get

on each node. Because of the “SPMD” programming model
used by MPI, each R process must have access to the source
file containing code to be executed. To ensure R processes
in remote nodes have access to both the test script and the
pbdR library source, we NFS share the home directory over
the cluster. We use the “OpenMPI” [45] installation avail-
able through the Ubuntu repositories.

Misc. Single Node Tools. We install R in the single node
setting from the “R-Studio” PPA using apt-get. We con-
figured R to link against the version of OpenBLAS compiled
from source (in the single node setting only). We installed
NumPy using pip install. NumPy ships with a built in
BLAS implementation which performs quite well and so we
did not link against the native library.

8.4 Additional Experimental Results
We here present and discuss additional results not pre-

sented in the body.

8.4.1 Additional Results for MAT
Multi-Node Dense Data Vary Rows Figure 9 presents
the remaining matrix operators for tests which fix the clus-
ter size at eight nodes and vary the number of rows in input
matrices. We point out that Spark MLLib has an optimized
Gram matrix computation routine which performs very well
- even beating out pbdR which typically led the pack for dis-
tributed matrix ops. We make one concluding remark about
matrix operator tests for MLLib. For matrix addition, only
the BlockMatrix type provides a method supporting addi-
tion with another distributed matrix. We found this method
to be slow in practice. Because of this, we implement a sim-
ple “add” function for the indexed row type which joins a
pair of row matrices by row id and then maps over the re-
sulting pair RDD, producing a new RDD which is the sum of
the row vectors. We present a comparison in table 11. This
method substantially out-performed the built in method and
so all numbers reported in plots use this approach.

Multi-Node Sparse Data Vary Sparsity Figure 10 presents
the remaining matrix operators for tests which fix the cluster
size at eight nodes and vary the sparsity of input matrices.
We remark that MADLib crashed during computation of
Gram matrix for the largest matrix size due to an attempt
to materialize a large array. We note that SystemML out-
performs MLLib’s optimized Gram matrix computation on
sparse data, although this is likely because it is performing
computation in the driver.

Multi-Node Dense Data Vary Nodes Figure 11 presents
results from tests which fix matrix dimensions at 20 million
rows by 100 columns and vary the number of nodes in the
cluster from two to eight. We note that speedups from scal-
ing the number of nodes are remarkably small - especially
for MADLib. We note as well that MLLib timed out for
GMM in the two node setting.

Multi-Node Sparse Data Vary Nodes Figure 12 presents
results from tests which fix data sparsity at 1% and vary the
number of nodes in the cluster from two to eight. The up-
per panel plots raw runtime, and the bottom plots speedup
curves relative to a single core. MADLib timed out for GRM
computation on a single segment. SystemML shows little
consistent benefit from scaling the number of nodes. This
is because it is pulling data into the driver and perform-
ing computation in single node mode. Interestingly, MLLib
and MADLib show slightly more benefit from adding cluster
nodes in the sparse setting than dense.

Single-Node Dense Data Vary Rows Figure 13 presents
results from tests which scale the number of rows in input
matrices in the single node setting. Matrix sizes are as in
distributed tests. Note that we here introduce new baseline
systems - R and NumPy. In this context, R is conventional
single node R as opposed to the pbdR flavor used in the
distributed setting. In the single node setting we use ML-
Lib’s local matrix types. In the local setting we found that
24 segments yielded optimal (or close to optimal) perfor-
mance for Greenplum and so all numbers reported here use
24 segments. With the exception of MADLib, performance
of all systems is fairly consistent. This is unsurprising as all
systems are calling out to libraries which have been heavily
optimized for the single-node in memory setting. R suffers
from some well known “copy overhead” in certain contexts
[75] which likely explains its modest gap relative to other

21

systems on norm and MVM. We note that using a native
BLAS was critical to obtaining good performance from ML-
Lib in the single node setting. Using the JVM-based imple-
mentation bundled with Spark resulted in poor performance
relative to other systems.

Single-Node Dense Data Vary Cores Figure 15 presents
results from tests which scale the number of CPU cores for
selected single node dense matrix operators. The top panel
plots raw numbers (including MADLib) while the bottom
plots a “speedup curve” relative to time with a single core.
As noted previously, we use the unix taskset command to
pin each process to a specific subset of CPU cores. For
Spark-based systems we explicitly restrict the number of
driver cores. For Greenplum, we build separate database
instances with the stipulated number of segments. As was
remarked previously, speedups (at least on the operators
considered) are generally sublinear. Interestingly, several
systems exhibit different speedup behaviors between the two
operators. This likely reflects differing parallelization strate-
gies of the underlying linear algebra library used by each sys-
tem. For example, Eigen multi-threads only a small subset
of the operators parallelized by OpenBLAS.

8.4.2 Additional Results for ALG
Single-Node Dense Data Vary Cores Figure 14 presents
complete results from tests which fix the size of input data
and vary the number of cores allocated. For all systems
but MADLib we fix the size of input data at 10, 000, 000 ×
100. For MADLib, we fix the size of data at 2, 500, 000 ×
100 to obtain tractable run-times. The top panel plots raw
runtimes while the bottom plots “speedup curves” relative
to the run-time for a single core.

Multi-Node Sparse Data Vary Sparsity Figure 16 presents
results from tests which fix the cluster size at eight nodes
and vary data sparsity. We here present results only for ML-
Lib and SystemML as MADLib either timed out or crashed
when attempting to allocate a large array for both tests.
SciDB was not run for this test. We present results only for
GNMF and HRSE as LR and REG were examined in tests
on SparseCriteo. Somewhat surprisingly, we found that Sys-
temML executed substantially faster when forced to run in
“spark-only” mode. Using our default driver memory of
32G, SystemML attempted to perform the computation in
the driver and crashed. We had to increase driver memory
to 80G before SystemML could complete these tests. How-
ever, we found that reducing driver memory to 10G, which
forces SystemML to perform most computation on Spark,
resulted in roughly 3x better performance. By default, Sys-
temML will execute computation in the driver if it estimates
driver memory is sufficient. The results of this test highlight
two important issues - first, even if computation can fit in
the driver, it may not be optimal to do so, and second, Sys-
temML often does not correctly estimate the memory foot-
print of computations which necessitates tedious trial and
error tuning of JVM heap sizes. We note as well that these
tests use a single large spark executor provisioned with all
available RAM and CPU. Our default “small-executor” tun-
ing settings sometimes caused out of memory errors and did
not substantially improve performance.

Multi-Node DenseCriteo Vary Nodes Figure 17 presents
results from tests which compare native and LA-based PCA

implementation on the dense Criteo AdClick dataset. We
compute the five strongest principal components. All tests
additionally re-project the input data X under the corre-
sponding principal components. For our LA-based imple-
mentation, we compute the principal components using an
Eigen decomposition of the data covariance matrix. This
test also uses a single large spark executor per node.

Multi-Node SparseCriteo Vary Nodes Table 5 presents
results from our LA-based implementations of logistic re-
gression run on the sparse Criteo dataset. We report only
logistic regression because this was the only test which could
be completed by any system. Both PCA and OLS regres-
sion crashed when attempting to materialize the largeXTX
matrix necessary for both algorithms. The table contains re-
sults only for SystemML as we could not obtain results for
any other system due to timeouts.

22

Table 5: Multi-Node SparseCriteo for SystemML with Varying Nodes
Nodes Run Times (Seconds) - LR

2 13,870.24 7,367.51 6,972.21 7,643.25 7,033.11
4 3,498.50 2,004.59 2,059.89 2,399.09 2,471.37
8 505.08 450.20 432.31 428.14 445.43

Table 6: Effect of LA Library on SystemML Performance (Single Node)
GMM Run Time (Seconds)

Open BLAS 10.58 11.93 10.75 11.44 11.17
Commons Math 7.96 8.49 10.14 13.60 14.45

Table 7: Effect of LA Library on MLLib Performance (8 Nodes)
GMM Run Time (Seconds)

Open BLAS 3,404.50 1,872.21 2,068.55 1,587.44 1,727.96
Netlib-Java 2,597.51 1,454.14 1,378.21 1,859.64 1,537.38

TSM Run Time (Seconds)

Open BLAS 38.71 29.31 25.37 25.27 23.88
Netlib-Java 5.91 2.11 2.07 3.73 3.32

ADD Run Time (Seconds)

Open BLAS 77.67 46.97 37.80 29.50 34.36
Netlib-Java 159.37 38.30 46.11 47.27 28.24

NORM Run Time (Seconds)

Open BLAS 3.02 4.55 2.34 4.61 3.49
Netlib-Java 5.33 4.55 4.48 4.54 4.47

MVM Run Time (Seconds)

Open BLAS 5.45 1.84 2.86 2.40 1.67
Netlib-Java 5.25 3.60 2.57 3.36 2.57

Table 8: Effect of LA Library on MLLib Performance (Single Node)
GMM Run Time (Seconds)

Open BLAS 64.84 47.56 7.82 6.68 6.50
Netlib-Java 282.14 280.85 284.02 289.75 276.72

ADD Run Time (Seconds)

Open BLAS 223.88 195.60 58.82 85.26 58.76
Netlib-Java 258.83 79.00 64.46 53.96 60.97

NORM Run Time (Seconds)

Open BLAS 144.17 312.43 69.13 103.51 65.35
Netlib-Java 86.40 211.62 68.58 124.10 69.49

MVM Run Time (Seconds)

Open BLAS 0.72 0.36 0.39 1.45 0.36
Netlib-Java 3.92 3.66 3.75 5.30 3.32

Table 9: Effect of Number of Executor Settings on MLLib Performance
Memory (GB) Cores GMM Run Time (Seconds)

200 24 5,746.80 2,982.14 2,900.22 624.84 243.63
100 12 836.57 290.92 276.03 269.36 245.12
50 6 826.93 342.80 243.16 235.86 255.95
25 3 764.11 230.12 257.69 269.57 257.46

Table 10: Effect of “NumMidDimSplits” on MLLib GMM Performance (8 Nodes)
GMM Run Time (Seconds)

1 2,466.73 1,440.77 1,391.03 1,477.93 1,361.21
500 2,308.37 926.07 739.91 630.80 761.83
1000 2,224.66 927.77 1,198.63 1,124.36 918.35

23

pbdR MADLib MLLib SciDB SystemML

2.52.5 5.0 10.0 20.0
Million Rows

100

101

102

Se
co

nd
s

(A) TRANS

2.5 5.0 10.0 20.0
Million Rows

100

101

102

103 (B) GRM

Figure 9: Multi-Node Dense Data for MAT with varying Rows

MADLib MLLib SciDB SystemML

10−2 10−1 100 101

Percentage nonzero values

100

101

102

Se
co

nd
s

(A) TRANS

10−2 10−1 100 101

Percentage nonzero values

100

101

102

103 (B) GRM

Figure 10: Multi-Node Sparse Data for MAT with Varying Sparsity

pbdR MADLib MLLib SciDB SystemML

2.0 4.0 8.0
Nodes

100

101

102

Se
co

nd
s

(A) NORM

2.0 4.0 8.0
Nodes

100

101

102

(B) MVM

2.0 4.0 8.0
Nodes

100

101

102

(C) ADD

2.0 4.0 8.0
Nodes

102

103
(D) GMM

2.0 4.0 8.0
Nodes

102

103 (E) TRANS

2.0 4.0 8.0
Nodes

101

102

103
(F) GRM

Figure 11: Multi-Node Dense Data for MAT with Varying Nodes

Table 11: Comparison of Matrix Addition Methods
Method Run Time (Seconds)

Native 722.58 615.02 413.82 593.22 646.10
Custom 159.37 38.30 46.11 47.27 28.24

24

MADLib MLLib SciDB SystemML

2.0 4.0 8.0
Nodes

100

101

Se
co

nd
s

(A) NORM

2.0 4.0 8.0
Nodes

101

(B) MVM

2.0 4.0 8.0
Nodes

101

102

(C) ADD

2.0 4.0 8.0
Nodes

101

102

(D) GMM

2.0 4.0 8.0
Nodes

101

2 × 101

3 × 101

4 × 101

6 × 101 (E) TRANS

2.0 4.0 8.0
Nodes

100

101

102

(F) GRM

Figure 12: Multi-Node Sparse Data for MAT with Varying Nodes

R MADLib MLLib NumPy SciDB SystemML TensorFlow

2.5 5.0 10.0 20.0
Million Rows

10−1

100

101

102

Se
co

nd
s

(A) NORM

2.5 5.0 10.0 20.0
Million Rows

10−1

100

101

102
(B) MVM

2.5 5.0 10.0 20.0
Million Rows

10−1

100

101

102

(C) ADD

2.5 5.0 10.0 20.0
Million Columns

100

101

102

103
(D) GMM

2.5 5.0 10.0 20.0
Million Rows

10−5

10−3

10−1

101

103 (E) TRANS

2.5 5.0 10.0 20.0
Million Rows

100

101

102

103
(F) GRM

Figure 13: Single-Node Dense Data for MAT with Varying Rows

25

R MADLib MLLib NumPy SciDB SystemML TensorFlow

1 2 4 8 16 24
Number of Cores

101

102

103

Se
co

nd
s

(A) OLS

1 2 4 8 16 24
Number of Cores

100

101

102
(B) LR

1 2 4 8 16 24
Number of Cores

101

102

103 (C) NMF

1 2 4 8 16 24
Number of Cores

101

102

103

104
(D) HRSE

1 2 4 8 16 24
Number of Cores

2

4

6

8

Sp
ee

du
p

(A) OLS

1 2 4 8 16 24
Number of Cores

2

4

6

Sp
ee

du
p

(B) LR

1 2 4 8 16 24
Number of Cores

1

2

3

4

Sp
ee

du
p

(C) NMF

1 2 4 8 16 24
Number of Cores

0.0

2.5

5.0

7.5

10.0

12.5

Sp
ee

du
p

(D) HRSE

Figure 14: Single-Node Dense Data for ALG with Varying Cores

R MADLib MLLib NumPy SciDB SystemML TensorFlow

12 4 8 16 24
Number of Cores

101

102

103

104

Se
co

nd
s

(A) GRM

1 2 4 8 16 24
Number of Cores

100

101

102

103
Se

co
nd

s
(B) ADD

Figure 15: Single-Node Dense Data for MAT with Varying Cores

MADLib MLLib SciDB SystemML

0.01 0.1 1.0 10.0
Percentage nonzero values

102

103

Se
co

nd
s

(A) NMF

0.01 0.1 1.0 10.0
Percentage nonzero values

103

(B) HRSE

Figure 16: Multi-Node Sparse Data for ALG with Varying Sparsity

26

Figure 17: Multi-Node DenseCriteo for LA-based and Native Implementations of LR

1.0 2.0 4.0 8.0
Nodes

101

102

(B.i) PCA

MADLib (LA) MADLib (Native) MLLib (LA) MLLib (Native) SystemML (Hybrid Native) SystemML (LA) SystemML (Spark Native)

Table 12: Effect of Number of Segments on MADLib Performance
GMM Run Time (Seconds)

6 1,234.10 1,097.47 1,153.95 1,165.01 1,208.63
12 -- -- -- -- --

24 2,321.03 2,182.65 2,129.74 2,175.40 2,095.39
ADD Run Time (Seconds)

6 251.41 213.41 143.87 137.61 186.11
12 -- -- -- -- --

24 321.93 263.73 282.65 291.18 251.34
NORM Run Time (Seconds)

6 40.08 59.03 47.08 51.94 81.89
12 90.17 106.00 86.98 144.68 98.37
24 95.64 94.69 97.86 105.18 94.55

MVM Run Time (Seconds)

6 216.97 203.94 227.01 231.20 209.47
12 265.36 247.24 248.48 244.74 253.37
24 236.66 241.99 247.83 244.80 244.49

Table 13: System Parameters Used
Parameter Name Value

/etc/security/limits.conf

nofile (soft/hard) 131093

nproc (soft/hard) 131072

/etc/security/limits.conf

net.ipv6.conf.all.disable ipv6 1

net.ipv4.tcp syncookies 0

net.ipv4.conf.default.accept source route 0

net.ipv4.tcp tw recycle 1

net.ipv4.tcp max syn backlog 4096

net.ipv4.conf.all.arp filter 1

net.ipv4.ip local port range 1025 65535

net.core.netdev max backlog 10000

net.core.rmem max 2097152

net.core.wmem max 2097152

vm.overcommit memory 1

kernel.shmmax 500000000

kernel.shmmni 4096

kernel.shmall 4000000000

kernel.sem 250 512000 100 2048

net.ipv6.conf.lo.disable ipv6 1

27

	Introduction
	Background
	LA Systems
	Overview of Compared Systems

	Description of Tests
	Task Complexity
	MAT: Matrix Operations
	PIPE: Pipelines and Decompositions
	ALG: Bulk LA-based ML Algorithms

	Experimental Comparison
	Results for MAT
	Results for PIPE
	Results for ALG
	Scalability on Criteo Datasets

	Analysis and Discussion
	Algorithm Implementation Effort
	Guidelines for Practitioners
	Key Takeaways
	Open Research Questions

	Other Related Work
	References
	Appendix
	Additional Background on Systems Compared
	Additional Detail on Tuning and Configuration
	Test Environment and Configuration
	Additional Experimental Results
	Additional Results for MAT
	Additional Results for ALG

