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Abstract—Networked applications with heterogeneous sensors
are a growing source of data. Such applications use machine
learning (ML) to make real-time predictions. Currently, features
from all sensors are collected in a centralized cloud-based tier to
form the whole feature vector for ML prediction. This approach
has high communication cost, which wastes energy and often
bottlenecks the network. In this work, we study how the inference
computation of several popular ML models can be factored
over a hierarchy of IoT devices to reduce communication by
computing partial inference results locally on devices beyond
the edge. We introduce exact factoring algorithms for some
models which preserve accuracy and present approximations for
others that offer high accuracy while reducing communication.
Measurements on a common IoT device show that energy use
and latency can be reduced by up to 63% and 67% respectively
without reducing accuracy relative to sending all data to the
cloud.

Keywords—machine learning; IoT; edge computing; energy
efficient computing

I. INTRODUCTION

The rapid growth in the number and variety of networked
sensors, collectively called the Internet of Things (IoT), is
causing a proliferation of data in a wide range of sensing
applications. Many providers of IoT systems are turning to
sophisticated machine learning (ML) techniques to analyze
this data. For example, Samsung now offers a robust line of
sensors designed for smart-home applications which integrate
with (predominantly) cloud based processing applications [1].
Similar product lines are offered by other major companies
as well [2], [3]. These deployments are still largely reliant on
the cloud for data processing with local processing on devices
typically supported only for relatively simple tasks which do
not require complex algorithms [4].

In this work, we consider how the inference computation for
complex, general purpose, ML algorithms can be efficiently
implemented in heterogeneous 10T applications which require
input from sensors gathering fundamentally different features.
As a running example, in Figure 1B, we consider an appli-
cation for predicting aggregate power demand from real-time
data on power use by individual appliances in a pair of homes.
Such applications have recently been proposed as a more
accurate alternative to aggregate data gathered from power
use meters for energy demand forecasting [5]. In the currently
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dominant “monolithic” approach, illustrated in Figure 1B(i),
each feature is communicated to the cloud where it is fed into
an ML model to predict energy demand.

In this context, ML algorithms are typically trained periodi-
cally offline and then deployed for predictions on live stream-
ing data. While online, supervised, training of models in sensor
networks has garnered significant research interest in recent
years, it remains a challenging problem due to the need for
labeled data and high communication cost for many practical
learning algorithms. Furthermore, inference occurs with far
greater frequency than learning and represents a significant
computational burden in its own right [6]. Accordingly, our
primary focus here is on inference.

The monolithic approach to inference has at least three key
issues. First, excessive communication reduces battery life.
Second, in some applications, the volume of data transmitted
can saturate the network, either crippling the system or leading
to increased latency [7]. Third, some applications have privacy
constraints that might be difficult to satisfy, e.g., a smart-home
user may not want their raw data to leave the home.

To mitigate these issues, recent work has proposed a mod-
ular “hierarchical” approach for heterogeneous IoT applica-
tions that pushes computation out of the cloud and onto
IoT devices [7]. This approach introduced software modules,
referred to as “context engines,” which run on IoT devices
and compute an aggregated representation of input data. Input
to these context engines may come from sensors connected
by a short-range link (e.g., Bluetooth) or the output of other
context engines. Thus, context engines can be organized in a
multi-layer hierarchy that successively abstracts the raw data,
as illustrated by Figure 1A. Devices running context engines
have CPUs and bi-directional wireless communication - a
representative example is the Raspberry Pi3 [8].

While work in [7] has shown the hierarchical model to
be effective for reducing communication, it complicates ML
application deployment. In the hierarchical setting, the cloud
no longer has access to the entire feature vector - only
the aggregated output of lower tiers in the hierarchy. This
means that each context engine can only compute a partial
inference result based on the data it can access locally. The
cloud must then compose these partial results to produce the
final prediction. We refer to this process as “hierarchy-aware
inference” and provide an example in Figure 1B(ii). Under
these constraints, the inference computation of many popular
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(A) An example heterogeneous IoT application for predicting the power consumption of a neighborhood. (B.i) Simplified example of monolithic

inference in a 2-tier hierarchy with appliance-specific power use features. In this example, the number of features communicated goes down from 4 to 2.

ML algorithms either cannot be expressed at all or requires
potentially burdensome levels of communication.

In this work we introduce several novel techniques to per-
form inference for complex, general purpose, ML algorithms
in hierarchical IoT applications. We consider generalized lin-
ear models, decision trees, boosted trees and random forests,
along with multilayer-perceptron (MLP) and recurrent “long-
short-term-memory” (LSTM) neural networks. We introduce
a novel hierarchy-aware inference algorithm for decision trees
and tree ensembles which minimizes communication cost
with no loss in accuracy. We additionally present several
“hierarchy-aware” neural network architectures which enable
users to trade off between communication cost and accuracy.
Our goal is to reduce energy use and latency by decreasing the
volume of data which must be communicated to perform an
inference computation. Using measurements gathered from a
real-world deployment on a popular IoT device, we show that
our approach leads to substantial - up to 67% - reductions in
energy use and latency without sacrificing accuracy.

II. RELATED WORK

General trade-offs between computing in the cloud or beyond
the edge are well studied in the IoT community [9], [10],
[11], [12]. However, prior work has primarily focused on
choosing between a lightweight model which can be fully
locally computed on an IoT device and a more computationally
demanding (but more accurate) model running in the cloud. In
the context of our example from Figure 1B, this would corre-
spond to treating both homes as independent data sources and
choosing between a simple model which could be computed
directly in each home and a more accurate model running
in the cloud. However, we assume a full inference result
is not possible locally and consider inference computations
which must be distributed across devices. Dependence between
sensors was addressed by [7], [13] but only for simple linear
aggregation functions. In contrast, our work is more general
(covering nonlinear models), and we propose novel hierarchy-
aware implementations for more complex ML models.
Recent work in [14], [15] studied how to pick the layer at
which a deep neural network’s computation should be split
between the cloud and beyond the edge to reduce energy use

and latency, but they focused on image processing applications
and did not address hierarchical architecture or statistical
dependence between data sources. The most closely related
work to ours is [16], which proposed a ‘“hierarchy-aware”
convolutional neural network for image classification. Their
work assumes homogeneous sensors (video cameras), which
implies that each device can still perform full inference, unlike
our setting. Additionally, they pass data up the hierarchy only
to improve accuracy, while fully device-local inference is
impossible in our setting.

Similarly, [17], [18] introduced a technique known as “fed-
erated learning” in which a centralized model is trained over
a distributed collection of devices (e.g., smartphones) using a
model averaging procedure. Returning to our running example,
this work assumes that a model can be “cloned” to each house
and trained on locally available data. Each house periodically
communicates its local model to the cloud which computes
a weighted average over all models and then transmits back
updated weights. However, this work is not applicable to our
setting as it assumes the availability of labeled data at each
context engine and that each device senses the same feature
set. Furthermore, the goal of federated learning (as we under-
stand it) is ultimately to generate local “on-device” predictions
while we focus on groups of sensors collaborating to generate
predictions in the cloud. Overall, our work differs from the
above in that we study ML deployments which require input
from a distributed collection of heterogeneous sensors in a
multi-layer hierarchy in which nonlinear dependencies are
assumed to exist between data gathered by different nodes.

III. HIERARCHY-AWARE ML INFERENCE

We now present our novel hierarchy-aware implementations
of several popular models. We consider an IoT deployment
consisting of a set of m devices which sense a total of d > m
features. ML inference is a function Y = f(x), where « is
a feature vector of length d. The elements of « may be real
numbers or integers. We denote by Fj,..., E,, the devices
at or beyond the edge. In general, « is only available in the
cloud and a device E; only has access to a (disjoint) subset
x; C x of the features.

Overall, our goal is to reduce the volume of data (e.g. bytes)
which must be communicated to compute f(a) without signif-



icantly reducing accuracy or introducing high additional com-
putational cost on the IoT devices. Our approach is based on
finding a decomposition of f(x) into a set of functions which
can be computed using only the data available locally to each
device E;. For example, in a two layer hierarchy this amounts
to finding a decomposition f(x) &~ go(g1(x1), - - -, gm (Tm))-
Communication is minimized when the output of each g; is a
single number and is lossless if the decomposition holds with
equality. We remark that our approach is complementary to
techniques which reduce communication by quantization or
precision reduction. We begin our discussion by considering
generalized linear models (GLMs) as a simple illustrative
example and then move on to tree based models and neural
networks which are of greater practical interest.

A. Generalized Linear Models

GLMs model the data using a hyperplane w € R? that sep-
arates the classes (for classification) or predicts a continuous
target (for regression). The inference computation for a GLM
simply computes an inner product u© = w” x and then applies
a scalar valued function o (u) to the result.

Hierarchy-Aware GLMs. On device E; that senses features
xz; C =z, we pre-store the weights corresponding to the
locally available features and compute u; = w!x; for each
inference request. The intermediate variable wu; is then sent
to the cloud which finishes the inference computation by
computing o(} /", u;). Since sums are associative, there is
no loss in accuracy relative to the full communication setting.
Furthermore, since each device simply transmits a single scalar
value, the communication cost attains the lower bound of m.

While GLMs are simple to deploy in the hierarchical
setting, they are of limited usefulness as learning algorithms
because they can only model linear relationships in the data.
Furthermore, standard techniques to address this limitation,
such as polynomial regression or support vector machines,
incur prohibitively high communication cost in the hierarchi-
cal setting. We now present novel hierarchy-aware inference
implementations for two popular and powerful ML models:
decision trees and neural networks.

B. Decision Trees and Random Forests

A decision tree recursively partitions the d-dimensional feature
space into hyperrectangles and approximates the data gener-
ating process using a constant for each hyperrectangle [19].
This partitioning is captured using a tree data structure. An
internal node has a Boolean expression of the form z < a,
where z is an individual feature in « having domain D,. The
value o € D, is a “split-point” learned from training data. A
leaf node carries the value predicted by the tree. Inference in
a decision tree traces a path from root to leaf based on the
sequential evaluation of the Boolean expression at each node.

Hierarchy-Aware Decision Trees. At first glance, it might
seem impossible to perform decision tree inference in our
setting: an arbitrary inference path from root to leaf will
involve multiple features in x, not all of which are available on

a single device - as in Figure 2(A). However, we can devise
a efficient inference procedure by observing that prediction
does not require exact knowledge of feature values - only
the partition of feature space an example falls under. Our
procedure has two phases: an offline pre-processing phase and
an online inference phase. An example is given in Figure 2(B).

In the offline pre-processing phase we are given a learned
decision tree 7. For each feature z € x we extract the set
of all split points on z € T and store them in a sorted array
v(z) = [ou, a2, ..., ). This array defines intervals that parti-
tion D, into p disjoint intervals - i.e. v(2); = ai—1 < 2z < ;.
Boosting and random forests (see: [20], [21]) can be handled
by taking v(z) to be the common refinement of the v(z;)
corresponding to each individual tree T};. We assign sequential
integers (0 to p—1) to these intervals, and set an arbitrary (say
lexicographical) ordering for the arrays corresponding to each
feature. Each device, along with the cloud, stores a copy of
the interval arrays corresponding its locally available features.

The online inference phase proceeds as follows. For a device
E; and for each feature z; € x;, determine the interval
partition number/index z; falls into using binary search over
v(z;). Denote the resulting indices by 31, ..., B;. We can then
represent this tuple of indices as a single scalar value using the
equation g = Y°F | 8; H;C:l 41 Pj- An example is presented in
Figure 2(B). This value encodes the region of the feature space
the example falls under and is transmitted to the cloud.

The cloud simply inverts the computations performed by
each device F; using standard modular arithmetic to recover
the indices corresponding to the interval into which each fea-
ture z € z falls and samples a value Z from this interval. The
value Z is then used in a conventional inference computation as
in Figure 2(A). Thus, the cloud does not necessarily recover
the true value of z, but it recovers a value lying the same
partition of D, and hence returns the same prediction. Since
each device only needs to communicate a single value, the
communication cost attains the lower bound of m. A caveat
to this statement is that the bit-length required to represent
the value communicated by F; may exceed a standard floating
point number (64 bits) if the number of split points in the z;
is large (i.e. the tree is deep). In our experimental evaluation
in section IV, we find that 64 bits is typically sufficient.

C. Neural Networks

We now to turn to the multilayer-perceptron (MLP), which is a
powerful generalization of the GLM capable of automatically
“learning” nonlinear structure in data. As shown in Figure
3(A), the MLP can be seen as a directed graph - the inter-
nal nodes are called “hidden units.” The first hidden layer
(consisting of h hidden units) computes g(x) = o(Wax + b),
where W is an h x d matrix of weights and b in an h x 1
vector of constants both of which are fixed for inference. The
cost of MLP inference in the hierarchical setting is mh. Thus,
for some values of h this may be communication saving, but
generally will not be as & is typically in the dozens or even
hundreds. Along with the MLP we also consider ‘“Projection
Pursuit Regression” (PPR) which is similar to a single layer
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Fig. 2. (A) Illustration of standard monolithic inference for a simplified binary classification decision tree. (B) Illustration of our hierarchy-aware inference

MLP but replaces the fixed activation function with a spline
and typically requires a much smaller h [22]. The vanilla
MLP can be extended in a straightforward manner to support
analysis of time-series data through the popular “long-short-
term memory” (LSTM) network architecture [23]. For our
purposes, it suffices to know that f(x) for an LSTM computes
4 matrix-vector products in the first layer, each of which has
the same basic computation as the single g in an MLP.

Hierarchy-Aware Neural Networks. Our modified MLP
architecture is illustrated by Figure 3(C). Our approach is to
“wire in,” a priori of training, a partial connectivity structure
based on the IoT application’s network imposed partitioning
of . On each device E} in the first layer of the hierarchy,
we maintain a local MLP w! = g} (x;) which only considers
the locally available features x;. As shown in Figure 3(C), the
output of each local network in the first layer of the hierarchy
is used as input by one or more local MLPs running on devices
in the second layer. This process is repeated recursively and
culminates in a fully connected MLP running in the cloud.
More formally, the i-th dev1ce in the j-th layer of the hierarchy
runs an MLP u/ = ¢/ (u?™"), where u/ "' denotes locally
available input to the i-th device - either raw features or the
output of previous layers. Because the model is simply a
composition of local MLPs the entire model can be jointly
trained end-to-end using standard back-propagation.

The complexity of the relationship between devices which
can be modeled is controlled by the output dimension x of
each local MLP - a larger value of x will allow for more
complex relationships, but will incur additional communica-
tion cost and increase the risk of overfitting. Because the MLP
is a non-convex optimization problem, there is no analytic
means for selecting « which must be chosen using standard
hyperparmeter tuning techniques (e.g. grid-search)[19]. This
approach generalizes naturally to recurrent neural network
(RNNSs) architectures such as the popular LSTM architecture
- shown in Figure 3(D) and (E).

IV. EXPERIMENTAL EVALUATION

We now evaluate our proposed hierarchy-aware ML inference
techniques on a suite of three real-world datasets from het-
erogeneous IoT use cases covering both classification and
regression. Our goal is to verify that our hierarchy-aware

[ Task/Dataset [ Type | n [ d [T m]
Urban Energy Demand Reg. 125,549 | 387 | 52
Human Activity Class. (5) | 804,228 52 4
Server Performance Reg. 24,729 60 5
TABLE T

DATASET STATISTICS. n IS THE NUMBER OF EXAMPLES, d IS THE NUMBER
OF FEATURES, AND m IS THE NUMBER OF DEVICES (CONTEXT ENGINES).

approaches do not reduce accuracy relative to models which
allow for unlimited communication. We selected benchmark
tasks which were both reflective of common IoT use-cases and
for which we expect modeling nonlinear relationships to yield
increased accuracy. The datasets are summarized in Table I.

The first dataset is a regression task which seeks to predict
aggregate neighborhood level power consumption from indi-
vidual appliances which were instrumented with power use
sensors. We use a commercial dataset provided by ‘“Pecan
Street Measurements” for this task [24]. The second dataset
is a classification task which infers the label for one of five
everyday activities (e.g. walking, running, cleaning, etc...)
using data gathered from three IMU sensors mounted at the
chest, ankle and wrist, along with a heart rate monitor. We use
the PAMAP2 dataset for this task which is publicly available
from the UCI machine learning repository [25]. The third and
final task is a regression task in which we attempt to predict
the performance of a program on a computer in a cluster using
data gathered from “performance measurement units” (PMU)
(e.g. cache hits, number of executed instructions, etc...). We
generated this data ourselves by instrumenting six servers to
record twelve PMU events as described in [26] while running
a set of twenty-six Apache Spark applications.

A. Results and Discussion

Figure 4 presents the overall accuracy and communication cost
for each model we compare. Accuracy and communication
cost are reported relative to the linear model which represents
the most naive hierarchy-aware implementation. For example,
in Figure 4(A), the square point at (2,0.85) indicates that
accuracy is improved by 15% relative to the linear model
but the total bytes communicated are doubled. Our goal is to
exceed the accuracy of the linear model by handling nonlinear
relationships between features associated with different con-
text engines without substantially increasing communication
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cost. For models which allow us to vary the number of outputs
from each context engine, we try values between 1 and |z;]| -
these are the interior points in the plots.

While no single model dominates all three tasks, we found
the hierarchy-aware MLP to generally deliver strong perfor-
mance. On all three tasks, we found that the LSTM based
models (a type of recurrent neural network) overfit in spite of
substantial hyperparameter tuning and so were omitted from
results to avoid obfuscating trends in the other models. LSTMs
are capable of modeling complex temporal structure in data
and are likely simply overkill for these relatively simple time-
series problems. Similarly, while PPR performed well on the
power prediction task, we found it overfit significantly on the
server performance task.

Overall, we see that for each dataset, at least one of
our hierarchy-aware ML models attains comparable or better
accuracy relative to the best monolithic ML model, while
yielding far lower communication cost. On all three datasets,
we find that modeling nonlinear relationships between the data
gathered by different devices in the hierarchy substantially
improves prediction accuracy. Thus, these results validate our
core claim in this paper: our hierarchy-aware techniques for
ML inference can reduce communication costs substantially,
while still yielding high accuracy.

B. Implementation and Measurement on RPI3

To understand how our proposed methods would benefit real
world deployments, we implemented our proposed hierarchy-
aware inference methods for XGBoost and the MLP (with a

compression factor of x = 1) on a Raspberry Pi3 (RPi3) [27].
The RPi3 communicates with another Pi3 acting as a server
using the MQTT protocol which is widely used for IoT
applications [28].

To simulate a variety of network speeds, we use the Linux
Kernel’s traffic controler (tc) to regulate the server’s band-
width. TC restricts incoming traffic by dropping a fraction
of packets which is reflective of congested networks. To
implement XGBoost, we learned a tree offline and extracted
the underlying data structure to identify the split points used by
each feature in all trees. We then implemented the algorithm
as described in Section III-B. We measure latency as the
total time required to perform computation (relevant in the
hierarchy-aware case only) and transmit data over MQTT.
Energy use is measured as the current drawn by the device dur-
ing computation and communication. We tested our approach
on the Human Activity dataset [25], varying the number of
inference requests from 200 to 400 per second. We report
results for communication bandwidths of 200, 700 and 5000
kbps, which correspond to typical bandwidths of constrained
Bluetooth, Bluetooth, and WiFi, respectively [29].

Figure 5 shows that the proposed methods can significantly
reduce energy use and latency, especially when network band-
width is low. The reductions in latency and energy consump-
tion are up to 67% and 63% respectively. The sharp increases
in both plots at 220, 260 and 400 samples per second are driven
by increased communication time in the monolithic case. We
attribute these increases to overhead in the TCP layer resulting
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from packet loss. We note that the hierarchy-aware MLP and
XGBoost exhibit similar trends for both energy and latency
reduction, indicating the extra computation cost incurred by
the device-local MLP is not significant. As expected, both
model types see largest efficiency gains when the network
bandwidth is more limited.

V. CONCLUSION

As the use of ML in heterogeneous Internet of Things ap-
plications grows, efficient management of IoT data for ML
inference has become a pressing challenge. In this work we
present approaches which factor inference computations for
several powerful and widely used ML models over a hierarchy
of IoT devices. By computing partial inference results locally
and transmitting only aggregated data up the hierarchy to the
cloud we reduce the overall cost of data movement. Using
experiments on three real world datasets and measurements
on a commonly used IoT device, we show our methods can
substantially reduce energy use and latency without losing
accuracy.
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